亚热带红壤区自然恢复草地转换为人工林后对土壤团聚体有机碳周转的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Conversion of Degraded Grassland into Plantations on Organic Carbon Turnover of Soil Aggregate in Subtropical Red Soil Area
  • 作者:李燕燕 ; 刘亮英 ; 张志坚 ; 吴春生 ; 刘苑秋 ; 樊后保
  • 英文作者:LI Yanyan;LIU Liangying;ZHANG Zhijian;WU Chunsheng;LIU Yuanqiu;FAN Houbao;College of Landscape and Art,Jiangxi Agricultural University;Institute of Ecology and Environmental Sciences,Nanchang Institute of Technology;Yichun City Forestry Research Institute;
  • 关键词:植被恢复 ; 人工林 ; 有机碳周转 ; 红壤退化草地
  • 英文关键词:vegetation restoration;;plantation;;organic carbon turnover;;red soil degraded grassland
  • 中文刊名:TRQS
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:江西农业大学园林与艺术学院;南昌工程学院水利与生态工程学院;宜春市林业科学研究所;
  • 出版日期:2019-01-24
  • 出版单位:水土保持学报
  • 年:2019
  • 期:v.33;No.160
  • 基金:江西省科技厅青年基金项目(20171BAB214007);; 江西省教育厅科技项目(GJJ170977);; 赣鄱英才“555”工程领军人才培养计划项目
  • 语种:中文;
  • 页:TRQS201901014
  • 页数:6
  • CN:01
  • ISSN:61-1362/TV
  • 分类号:82-87
摘要
选择江西泰和红壤退化区25年的自然恢复草地和2种恢复林地,测定了土壤团聚体有机碳的δ13 C,探讨了森林恢复过程有机碳在团聚体中的分配和周转特征。结果表明:3种植被恢复模式土壤大团聚比例最高,微团聚体比例最低,木荷林0-20cm土层大团聚体比例平均值高于马尾松林和草地;木荷林表层土各粒径团聚体有机碳含量均显著高于草地,表层土粉黏粒(<53μm)有机碳含量最高,其有机碳δ13 C最低;草地表层土团聚体中有机碳δ13 C值比全土降低幅度最大,阔叶林中居中;3种植被恢复模式下土壤大团聚体总有机碳储量最大,其次是粉黏粒,最小的是微团聚体,来自人工林的新碳主要分布在土壤表层大团聚体中;马尾松林和木荷林表层土团聚体中有机碳的周转时间为41~53年,低于10-20cm土层,2种林分粉黏粒中有机碳的周转时间最短,微团聚体中有机碳周转时间最长。研究表明以常绿阔叶树木荷直接进行植被恢复能够有效提升土壤地力,不仅提高了全土中的有机碳含量,也增加了团聚体中的有机碳含量;而以先锋树种马尾松进行的植被恢复效果弱于木荷林,应当采取一定营林措施促进马尾松林的恢复效果。
        In this study,two stands and natural grassland were selected in Taihe Red soil degraded area of Jiangxi Province to research the distributions and turnover characteristics of organic carbon in soil aggregates.The results showed that the proportion of macroagrregates was the largest and that of microaggregates was the lowest.The content of organic carbon of all aggregates was higher in the Schima plantation than that of the grassland.The organic carbon in soil silt(<53μm)was the highest.Theδ13C value of soil aggregate in the surface soil had the highest decrease in grassland compared with the original soil,and moderate in broad-leaved forest.The turnover time of soil organic carbonin surface layer in coniferous forest was 41~53years,lower than that in 10-20 cm soil layer.The turnover time of organic carbon in the clay particle of the two plantation was the shortest and that in the macroaggregate was the longest.The results also showed that vegetation restoration from evergreen broad-leaved Schima superba in the red soil region could effectively enhance soil fertility thus not only increasing the organic carbon content in the original soil,but also increasing the organic carbon content in the aggregate.However,the vegetation restoration effect of Pinu smassoniana plantationwas weaker than that of broadleaved forest.So some measures should be taken to promote the restoration of coniferous forest.
引文
[1] Huang L,Shao Q,Liu J.Forest restoration to achieve both ecological and economic progress,Poyang Lake basin[J].China Ecological Engineering,2012,44:53-60.
    [2] Liao J D,Boutton T W,Jastrow J D.Organic matter turn over in soil physical fractions following woody invasion of grassland:Evidence from natural 13 C and 15 N[J].Soil Biology and Biochemistry,2006,38:3197-3210.
    [3] Novara A,Gristina L,Kuzyakov Y,et al.Turnover and availability of soil organic carbon under different mediterranean land-uses[J].European Journal of Soil Science,2013,64:466-475.
    [4] Bai E,Boutton T W,Liu F,et al.Spatial variation of soilδ13 C and its relation to carbon input and soil texture in a subtropical lowland woodland[J].Soil Biology and Biochemistry,2012,44:102-112.
    [5] Denef K,Zotarelli L,Boddey R M,et al.Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two oxisols[J].Soil Biology and Biochemistry,2007,39:1165-1172.
    [6]赵其国,黄国勤,马艳芹.中国南方红壤生态系统面临的问题及对策[J].生态学报,2013,33(24):7615-7622.
    [7] Liu Y Q,Wei X H,Guo X M,et al.The long-term effects of reforestation on soil microbial biomass carbon in sub-tropic severe red soil degradation areas[J].Forest Ecology and Management,2012,285:77-84.
    [8] Xie J S,Guo J F,Yang Z J,et al.Rapid accumulation of carbon on severely eroded red soils through afforestation in subtropical China[J].Forest Ecology and Management,2013,300:53-59.
    [9]孙杰,田浩,范跃新,等.长汀红壤侵蚀退化地植被恢复对土壤团聚体有机碳含量及分布的影响[J].福建师范大学学报(自然科学版),2017,33(3):87-95.
    [10]李勇.黄土高原植物根系与土壤抗冲性[M].北京:科学出版社,1995.
    [11]窦森,李凯.土壤团聚体中有机质研究进展[J].土壤学报,2010,48(2):412-418.
    [12]张庆费,徐绒娣.浙江天童常绿阔叶林演替过程的凋落物现存量[J].生态学杂志,1999,18(2):17-21.
    [13]陆晓辉,丁贵杰,陆德辉.人工调控措施下马尾松凋落叶化学质量变化及与分解速率的关系[J].生态学报,2017,37(7):2325-2333.
    [14]顾鑫,安婷婷,李双异,等.δ13 C法研究秸秆添加对棕壤团聚体有机碳的影响[J].水土保持学报,2014,28(2):243-248.
    [15] Verchot L V,Dutaur L,Shepherd K D,et al.Organic matter stabilization in soil aggregates:Understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils[J].Geoderma,2011,161:182-193.
    [16]刘满强,胡锋,陈小云.土壤有机碳稳定机制研究进展[J].生态学报,2007,27(6):2642-2651.
    [17] Chorover J,Amistadi M K.Reaction of forest floor organic matter at goethite,birnessite and smectite surfaces[J].Geochimica Et Cosmochimica Acta,2001,65(1):95-109.
    [18] Deng L,Liu G B,Shangguan Z P.Land-use conversion and changing soil carbon stocksin China’s‘Grainfor-Green’Program:A synthesis[J].Global Change Biology,2014,20:3544-3556.
    [19] Six J,Paustian K.Aggregate-associated soil organic matter as an ecosystem property and a measurement tool[J].Soil Biology and Biochemistry,2014,68:4-9.
    [20] Schwendenmann L,Pendall E.Effects of forest conversion into grassland on soil aggregate structure and carbon storage in Panama:Evidence from soil carbon fractionation and stable isotopes[J].Plant and Soil,2006,288:217-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700