二级旋流气液分离装置设计与流场特性模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of two-stage swirling gas-liquid separator and simulation of flow field characteristics
  • 作者:杨兆铭 ; 陈建磊 ; 韩云蕊 ; 何利民 ; 罗小明
  • 英文作者:Zhaoming YANG;Jianlei CHEN;Yunrui HAN;Limin HE;Xiaoming LUO;College of Pipeline and Civil Engineering,China University of Petroleum;SINOPEC Petroleum Engineering Corporation;China University of Petroleum-Shandong Provincial Key Laboratory of Oil and Gas Storage and Transportation Security;
  • 关键词:高气液比 ; 旋流分离 ; 校核方法 ; 数值模拟 ; 非对称性
  • 英文关键词:high gas-liquid ratio;;cyclone separation;;determination method;;numerical simulation;;asymmetry
  • 中文刊名:HGYJ
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:中国石油大学(华东)储运与建筑工程学院;中石化石油工程设计有限公司;中国石油大学(华东)山东省油气储运安全省级重点实验室;
  • 出版日期:2018-08-17 17:00
  • 出版单位:过程工程学报
  • 年:2018
  • 期:v.18
  • 基金:国家科技重大专项基金资助项目(编号:2016ZX05028-004-003)
  • 语种:中文;
  • 页:HGYJ201806009
  • 页数:12
  • CN:06
  • ISSN:11-4541/TQ
  • 分类号:87-98
摘要
通过有效体积转化进行分离器尺寸设计,针对高气液比工况设计了一种二级旋流气液分离装置,基于液滴在旋流场中的破碎特性及Navier-Stocks方程的简化求解建立一种分离器直径的校核方法,通过实验验证了该校核方法有效.通过CFD方法对简化的分离装置内部流场的非对称性进行分析.结果表明,旋转流场的不稳定程度随入口面积和升气管直径减小而减小,入口速度不影响流场的不稳定程度,不同的长宽比在相同的入口面积下对内部流场的非轴对称性无显著影响,但单独增加入口的长、宽或二者同时增加使入口面积增大,将使分离器筒体横截面与入口截面的面积比KA减小,增加内部流场的非轴对称性.
        The undersea separation was widely used in the petroleum industry to improve the efficiency and keep the well pressure. High gas-liquid ratio condition exists in offshore gas field frequently and for this condition, a novel two-stage gas and liquid cylindrical cyclone was designed. In order to increase the separation efficiency, some parts had been added in the separator. The size parameters of the separator were designed by using effective volume transformation methods, and a method for diameter determination was also proposed based on the characteristics of liquid drop breaking in swirl field. This determination described the liquid drop's changing shape and breaking in the gas cyclone field and the critical relative velocity of the gas phase and liquid phase when the liquid drops started to break had also been calculated. The model based on the pressure field by the solution of Navier-Stocks equation and had also been verified by the experiments which had measured the liquid drops diameters by using Malvern laser particle size analyzer and the data from model and experiments kept high consistency. Different turbulence models, different meshing schemes and different discrete formats had been compared in order to choose the best numerical simulation plan and this plan also had been validated by existing experimental data. The characteristics of asymmetry were analyzed by CFD about the internal flow field of the simplified model and the influence of structural parameters and operational parameters were also obtained. The results of the models showed that it was very diffcult for oil drops in different diameters to break in the gas cyclone fields. The results of the numerical simulation showed that the length of the separator had little effect on the asymmetry characteristics of the internal flow field and the inlet velocity and the ratio of the length and width of inlet would not make the internal flow field become unstable.
引文
[1]Erdal F M,Shirazi S A.Effect of inlet configuration on flow behavior in a cylindrical cyclone separator[C]//ASME.2002 Engineering Technology Conference on Energy.Houston:American Society of Mechanical Engineers,2002:521-529.
    [2]韩孟霞.沉箱式柱状旋流气液分离器的分离性能研究[D].青岛:中国石油大学(华东),2015:2-6.Han M X.Separation performance research on the caisson gas-liquid cylindrical cyclone separator[D].Qingdao:China University of Petroleum(East China),2015:2-6.
    [3]朱乐涛.气液柱状旋流式分离器先进控制策略研究[D].合肥:中国科学技术大学,2013:3-6.Zhu L T.Research on advanced control strategies for gas liquid cylindrical cyclone[D].Hefei:University of Science and Technology of China,2013:3-6.
    [4]Wang S,Gomez L,Mohan R,et al.The state-of-the-art of gas-liquid cylindrical cyclone control technology:from laboratory to field[J].J.Energy Res.Technol.,2010,132(3):87-94.
    [5]Erdal F M,Shirazi S A,Mantilla I,et al.Computational fluid dynamics(CFD)study of bubble carry-under in gas-liquid cylindrical cyclone separators[J].SPE Prod.Facil.,2000,15(4):217-222.
    [6]Arpandi I A,Joshi A R,Shoham O,et al.Hydrodynamics of twophase flow in gas-liquid cylindrical cyclone separators[J].SPE J.,1995,1(4):427-436.
    [7]Earni S,Marrelli J D,Wang S,et al.Slug detection as a tool for predictive control of GLCC compact separators[J].J.Energy Res.Technol..2003,125(2):145-153.
    [8]Wang S,Kouba G E,Gomez L E,et al.Gas-liquid cylindrical cyclone(GLCC)compact separators for wet gas applications[J].J.Energy Res.Technol.,2003,125(1):43-50.
    [9]薄启炜,张琪,林博,等.螺旋式井下油气分离器设计与分析[J].石油机械,2003,31(1):8-10.Bo Q W,Zhang Q,Lin B,et al.Design and analysis of spiral downhole oil and gas separator[J].China Petroleum Machinery,2003,31(1):8-10.
    [10]王尊策,崔航,李森,等.井下螺旋式气液分离器分离性能的数值模拟[J].科学技术与工程,2010,10(6):1358-1361.Wang Z C,Cui H,Li S,et al.Numerical simulation of separation performance of downhole spiral gas liquid separator[J].Science Technology and Engineering,2010,10(6):1358-1361.
    [11]金向红,金有海,王建军,等.气液旋流器的分离性能[J].中国石油大学学报(自然科学版),2009,33(5):124-129.Jin X H,Jin Y H,Wang J J,et al.Gas-liquid hydrocyclone separation performance[J].Journal of China University of Petroleum(Natural Science),2009,33(5):124-129.
    [12]金向红,金有海,王建军,等.气-液旋流分离技术应用的研究进展[J].化工机械,2007,34(6):351-355.Jin X H,Jin Y H,Wang J J,et al.Research progress of gas-liquid swirling separation technology[J].Chemical Engineering&Machinery,2007,34(6):351-355.
    [13]静玉晓.轴流导叶式旋流分离器的研制[D].青岛:中国石油大学(华东),2010:51-57.Jing Y X.Development of axial flow vane-guide cyclone separator[D].Qingdao:China University of Petroleum(East China),2010:51-57.
    [14]陈建磊.柱状两级旋流气液分离器数值模拟与实验研究[D].青岛:中国石油大学(华东),2014:7-8.Chen J L.Numerical simulation and experimental study of two-stage gas-liquid cylindrical cyclone separator[D].Qingdao:China University of Petroleum(East China),2014:7-8.
    [15]Fischer P A.Subsea production systems progressing quickly[J].World Oil,2004,25(11):30-32.
    [16]李时光.紧凑型柱状气液两级旋流分离器研究[D].青岛:中国石油大学(华东),2017:5-7.Li S G.Research on the two-stage gas and liquid cylindrical cyclone[D].Qingdao:China University of Petroleum(East China),2017:5-7.
    [17]王韬杰.水下两级柱状气液旋流分离器分离性能的实验研究[D].青岛:中国石油大学(华东),2016:2-7.Wang T J.Separation performance research on the under-water twostage gas and liquid cylindrical cyclone[D].Qingdao:China University of Petroleum(East China),2016:2-7.
    [18]王佩弦.沉箱式水下气液分离器设计及其分离特性研究[D].青岛:中国石油大学(华东),2017:1-8.Wang P X.Design of caisson gas-liquid subsea separator and separation performance research[D].Qingdao:China University of Petroleum(East China),2017:1-8.
    [19]Mogseth G.Functional verification of the world first full field subsea separation system-TIORA[C]//Offshore Technology Conference.2008:346-350.
    [20]Rose C.Apparatus and method for the monopoles linking of frequency agile emitter pulses intercepted in on single interferometer baseline:US 6411249 B1[P].2002-06-25.
    [21]Zhao B.Prediction of gas-particle separation efficiency for cyclones:a time-of-flight model[J].Sep.Purif.Technol.,2011,85(2):171-177.
    [22]Hsiang L P,Faeth G M.Near-limit drop deformation and secondary breakup[J].Int.J.Multiphase Flow,1992,18(5):635-652.
    [23]Wang L,Feng J,Gao X,et al.Investigation on the oil-gas separation efficiency considering oil droplets breakup and collision in a swirling flow[J].Chem.Eng.Res.Des.,2017,117:394-400.
    [24]Wang A,Marashdeh Q,Fan L S.ECVT imaging and model analysis of the liquid distribution inside a horizontally installed passive cyclonic gas-liquid separator[J].Chem.Eng.Sci.,2016,141:231-239.
    [25]Yoshidaa H,Kwan-Sikb Y,Fukuib K,et al.Effect of apex cone height on particle classification performance of a cyclone separator[J].Adv.Powder Technol.,2003,14(3):263-278.
    [26]陈建磊,何利民,罗小明,等.旋流分离器流场模拟研究方法优化选择[J].过程工程学报,2013,13(5):721-727.Chen J L,He L M,Luo X M,et al.Optimal selection of numerical simulation methods for flow field in cyclone separator[J].Chin.J.Process Eng.,2013,13(5):721-727.
    [27]Slack M D,Prasad R O,Bakker A,et al.Advances in cyclone modelling using unstructured grids[J].Chem.Eng.Res.Des.,2000,78(8):1098-1104.
    [28]魏耀东,张静,宋健斐,等.旋风分离器自然旋风长的试验研究[J].热能动力工程,2010,25(2):206-210.Wei Y D,Zhang J,Song J F,et al.Experimental study on natural cyclone of cyclone separator[J].Journal of Engineering for Thermal Energy and Power,2010,25(2):206-210.
    [29]宋健斐,魏耀东,时铭显.蜗壳式旋风分离器内气相流场非轴对称特性分析[J].化工学报,2007,58(5):1091-1096.Song J F,Wei Y D,Shi M X.Analysis of asymmetry of gas-phase flow field in volute cyclone[J].CIESC Journal,2007,58(5):1091-1096.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700