酸枣根系导管结构的可塑性对自然梯度干旱生境的适应机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism of Plasticity of Root Vessel Structure of Ziziphus jujuba var. spinosa Adapting Ecotopes along a Natural Drought Gradient
  • 作者:朱广龙 ; 陈许兵 ; Irshad ; Ahmad ; 刘家玮 ; 智文芳 ; 焦秀荣 ; 周桂生
  • 英文作者:ZHU Guanglong;CHEN Xubing;Irshad Ahmad;LIU Jiawei;ZHI Wenfang;JIAO Xiurong;ZHOU Guisheng;Joint International Research Laboratoryof Agriculture and Agri-Product Safety,the Ministry of Educationof China,Institutes of Agricultural Science and Technology Development,Yangzhou University;Jiangsu Provincial Key Lab of Crop Genetics&Physiology,Yangzhou University;
  • 关键词:酸枣 ; 导管分子 ; 解剖结构 ; 梯度干旱 ; 生境
  • 英文关键词:Ziziphus jujuba var. spinosa;;Vessel element;;Anatomic structure;;Drought gradient;;Ecotope
  • 中文刊名:TRXB
  • 英文刊名:Acta Pedologica Sinica
  • 机构:扬州大学农业科技发展研究院教育部农业与农产品安全国际合作联合实验室;扬州大学江苏省作物遗传生理重点实验室;
  • 出版日期:2018-04-11 15:09
  • 出版单位:土壤学报
  • 年:2018
  • 期:v.55
  • 基金:江苏省高校自然科学基金(17KJB210008);; 扬州大学高层次人才科研启动项目(137011178)资助~~
  • 语种:中文;
  • 页:TRXB201803021
  • 页数:10
  • CN:03
  • ISSN:32-1119/P
  • 分类号:241-250
摘要
根系导管是植物吸收和输送水分的主要通道,导管的结构将最终决定其导水功能和效率,研究导管结构的可塑性是理解植物对干旱梯度适应机制的关键。以采自烟台-石家庄-银川-吐鲁番形成的自然梯度干旱生境中生长的酸枣植株为试验材料,采用离析法和植物显微技术,探究酸枣根次生木质部导管对梯度干旱生境适应的结构特征和机制。结果表明:酸枣根系次生木质部导管有6种类型,不同生境中同种导管的数量和形态差异较大。根据管尾情况可将导管分为三类:无尾型、一端有尾型和两端有尾型导管,且在结构上表现出特定的适应特征及规律。从烟台至吐鲁番随干旱加剧,根系中网纹导管管壁加厚,管尾变短;孔纹导管长度、宽度、直径减小,壁厚增加,管尾变长;螺纹导管长度变小,管壁变薄,管尾变短;梯纹导管长度、宽度和直径均降低,从无尾型向有尾型转变;木纤维长度、宽度变小,管壁变薄,管尾加长。与烟台样地的导管相比,石家庄、银川和吐鲁番样地的孔纹导管长度分别减小了17.63%、11.23%和7.67%;螺纹导管的管壁分别减小了20.2%、11.4%和14.6%;梯纹导管的长度和宽度分别减小了29.1%、37.6%、31.4%和20.7%、48.5%、28.6%;木纤维的长度分别减小了0.7%、1.5%和2.6%,宽度减小了2.2%、4.7%和5.4%,管壁厚度减小了33.2%、29.3%和22.1%。说明酸枣植株根系导管的可塑性较大,导管形态和结构的变化利于水分和养分的高效吸收和转运。导管长度、管壁和管尾的变化增强了根系的韧性和伸展能力,利于根系深扎、吸收深层土壤中的水分并快速补充植株在干旱环境中的蒸腾散失,从而适应干旱生境,保证植株的正常生长和代谢。
        【Objective】Root system of a plant plays a vital role in drought tolerance. Water and nutrients are absorbed by roots, which have to adapt themselves in structure and function to adverse environments for survival, and the structure determines their function and efficiency of water/nutrient translocation. However, little information is available about plasticity of the vessel in structure in the root system of the plant growing in different ecotopes. So, study on plasticity of the vessel is the key to understanding plant adaption to ecotopes along a gradient of drought.【Method】Therefore, this study was done to explore plasticity of rootvessels in structure of Ziziphus jujuba var. spinosa growing in different ecotopes, such as Yantai, Shijiazhuang, Yinchuan and Turpan along a natural drought gradient. Roots were sampled from the four ecotopes for analysis of characteristics of the vessels in the secondary xylem of the roots using segregation process and microscopy.【Result】The root vessels could be classified into six types and varied sharply in number and structure with the ecotope. The vessels could be sorted into three types according to their tail structure: no tail, tail on one end and tails on both ends, which demonstrate specific adaptive properties and regularity. From Yantai to Turpan with the drought aggravating, the reticulate vessel increased in thickness of the wall, but decreased in length of tails; the pitted vessel decreased in length, width and diameter, but did reversely in thickness of the wall and length of the tails; the spiral vessel decreased in length, thickness of the wall and length of the tails; the scalariform vessel decreased in length, width and diameter and evolved from tailless to multi-tailed; and the xylon declined gradually in length, width and thickness of the wall, but did reversely in length of the tails. In addition, compared with the tree in Yantai, the trees in Shijiazhuang, Yinchuan and Turpan had the pitted vessel decreased by 17.63%, 11.23% and 7.67% in length, the spiral vessel decreased by 20.2%, 11.4% and14.6% in thickness of the wall, the scalariform vessel decreased by 29.1%, 37.6%, 31.4% and 20.7%, 48.5%, 28.6% in length and width, and the xylon decreased by 0.7%, 1.5% and 2.6% in length, by 2.2%, 4.7% and 5.4% in width and by 33.2%, 29.3% and 22.1% in thickness of the wall, respectively. 【Conclusion】All the findings indicate that the root vessels of Ziziphus jujuba var. spinosa are high in plasticity and vary in structure with the ecotope to adapt to local conditions for better adsorption and transport of water nutrients. All the changes in vessel structure improve tenacity and extendability of the roots, enabling the root to go deeper into the soil to adsorb more water from deep soil layers to make up the loss through transpiration in dry environments, thus improving the plants' resistance to drought and adaption to harsh environments to ensure normal growth.
引文
[1]康东东,韩利慧,马鹏飞,等.不同地理环境下酸枣叶的形态解剖特征.林业科学,2008,44(12):135-139Kang D D,Han L H,Ma P F,et al.Comparison on characters of leaf anatomy of Ziziphus jujuba var.spinosa in different geography environment(In Chinese).Scientia Silvae Sinicae,2008,44(12):135-139
    [2]朱广龙,邓荣华,魏学智.酸枣根系空间分布特征对自然干旱梯度生境的适应.生态学报,2016,36(6):1539-1546Zhu G L,Deng R H,Wei X Z.Spatial distribution of the root system of Ziziphus jujuba var.spinosa in response to a natural drought gradient ecotope(In Chinese).Acta Ecologica Sinica,2016,36(6):1539-1546
    [3]战立花,许阿美,魏学智.酸枣根系构型和活力对极端干旱气候的响应规律研究.安徽农业科学,2012,40(20):10435-10438Zhan L H,Xu A M,Wei X Z.Responses of root system architecture and root activities of Ziziphus jujuba var.spinosa to arid climate(In Chinese).Journal of Anhui Agricultural Sciences,2012,40(20):10435-10438
    [4]战立花.黄土高原地区酸枣根系分布特征研究.中国园艺文摘,2016,32(12):46-48Zhan L H.Root distribute of Ziziphus jujuba var.spinosa to Loess Plateau region(In Chinese).Chinese Horticulture Abstract,2016,32(12):46-48
    [5]尹惠敏.酸枣根系构型特征研究.中国水土保持,2012(10):59-61Yi H M.The study on the root system architecture of Ziziphus jujuba var.spinosa(In Chinese).Soil and Water Conservation in China,2012(10):59-61
    [6]刘学师,刘新根,任小林.酸枣根系抗旱性研究.河北农业大学学报,2007,30(6):33-37Liu X S,Liu X G,Ren X L.Study on drought resistance of the root for Ziziphus var.spinosa Hu(In Chinese).Journal of Agricultural University of Hebei,2007,30(6):33-37
    [7]鲁松.干旱胁迫对植物生长及其生理的影响.江苏林业科技,2012,39(4):51-54Lu S.Effects of drought stress on plant growth and physiological traits(In Chinese).Journal of Jiangsu Forestry Science&Technology,2012,39(4):51-54
    [8]刘冠志,刘果厚,兰庆,等.黄柳与小红柳导管分子形态特征及其生态适应性比较研究.西北植物学报,2016,36(2):316-322Liu G Z,Liu G H,Lan Q,et al.Comparative study on morphological characteristics and ecological adaptability of vessel elements of Salix gordejevii and S.microstachya var.bordensis(In Chinese).Acta Botanica Boreali-OccidentaliaSinica,2016,36(2):316-322
    [9]Carlquist S.Wood anatomy of coriariaceae:Phylogenetic and ecological implications.Systematic Botany,1985,10(2):174-183
    [10]Zimmermann M H.Hydraulic architecture of some diffuse-porous trees.Canadian Journal of Botany,1978,56(18):2286-2295
    [11]朱广龙,邓荣华,马茵,等.酸枣茎导管对自然梯度干旱生境响应的结构特征.生态学报,2015,35(24):8268-8275Zhu G L,Deng R H,Ma Y,et al.Changes in the vessel morphology of Ziziphus jujuba var.spinosa plants in response to natural drought gradient ecotopes(In Chinese).Acta Ecologica Sinica,2015,5(24):8268-8275
    [12]朱丽,黄刚,唐立松,等.梭梭根系的水分再分配特征对其生理和形态的影响.干旱区研究,2017,34(3):638-647Zhu L,Huang G,Tang L S,et al.Root internal hydraulic redistribution and its effects on the physiological form and plant growth of Haloxylon ammodendron(In Chinese).Arid Zone Research,2017,34(3):638-647
    [13]丁俊杰,张鑫,楚光明,等.三种荒漠植物导管特征及其可塑性研究.干旱区资源与环境,2016,30(9):171-177Ding JJ,Zhang X,Chu G M,et al.Vessel characteristics and their plasticity in three desert plants(In Chinese).Journal of Arid Land Resources&Environment,2016,30(9):171-177
    [14]赵云云,田汝岭.木质部管状分子的结构及发生.生物学通报,1997,32(3):8-10Zhao Y Y,Tian R L.Structure and development of tubular molecules in xylem(In Chinese).Bulletin of Biology,1997,32(3):8-10
    [15]Takhtajan A.Morphological evolution of the angiosperms.Moscow:Agricultural Press,1984:89-93
    [16]李吉跃,翟洪波.木本植物水力结构与抗旱性.应用生态学报,2000,11(2):301-305Li J Y,Zhai H B.Hydraulic architecture and drought resistance of woody plants(In Chinese).Chinese Journal o f Applied Ecology,2000,11(2):301-305
    [17]房凯.植物导管输送水的实验室检测方法研究.绵阳师范学院学报,2003,22(2):56-60Fang K.Laboratory examination of the water transportation of plant conduct(In Chinese).Journal of Mianyang Normal University,2003,22(2):56-60
    [18]Lindorf H.Wood and leaf anatomy in Sessea corymbiflora from an ecological perspective.IAWA Journal,1997,18(2):157-168
    [19]郭京衡,李尝君,曾凡江,等.2种荒漠植物根系生物量分布与土壤水分、养分的关系.干旱区研究,2016,33(1):166-171Guo J H,Li C J,Zeng F J,et al.,Relationship between root biomass distribution and soil moisture,nutrient for two desert plant species(In Chinese).Arid Zone Research,2016,33(1):166-171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700