基于FFD方法的高超声速升力体气动优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Aerodynamic optimization of hypersonic lifting body based on FFD method
  • 作者:夏陈超 ; 邵纯 ; 姜婷婷 ; 陈伟芳
  • 英文作者:XIA Chen-chao;SHAO Chun;JIANG Ting-ting;CHEN Wei-fang;School of Aeronautics and Astronautics,Zhejiang University;
  • 关键词:自由变形 ; 无限插值法 ; 高超声速 ; 升力体 ; 优化设计
  • 英文关键词:free form deformation;;transfinite interpolation;;hypersonic;;lifting body;;design optimization
  • 中文刊名:GTHJ
  • 英文刊名:Journal of Solid Rocket Technology
  • 机构:浙江大学航空航天学院;
  • 出版日期:2015-12-15
  • 出版单位:固体火箭技术
  • 年:2015
  • 期:v.38;No.171
  • 基金:国家重点基础研究发展计划(2014CB340201)
  • 语种:中文;
  • 页:GTHJ201506002
  • 页数:6
  • CN:06
  • ISSN:61-1176/V
  • 分类号:5-10
摘要
将FFD(Free Form Deformation)自由变形法与无限插值动网格方法相结合,发展了一种飞行器参数化建模和网格生成方法。二维和三维的实例显示自由变形之后得到的飞行器几何外形及其对应的网格能保持平滑光顺,验证了方法的有效性。在此基础上,结合径向基函数代理模型和CFD技术发展了一套优化设计方法并对高超声速升力体外形进行了气动优化。基于自适应模拟退火算法的单目标优化表明,在保持原有外形体积不减小的情况下,升阻比提高了1.28%;基于NSGA-II的多目标优化得到了飞行器升阻比和体积的最优解集,典型优化外形的升阻比和体积分别提高了2.93%和2.49%。升力体的优化结果表明了FFD方法的有效性和优化设计方法的实用性。
        A general method of parametric modeling and grid generation was developed by combining the free form deformation( FFD) and transfinite interpolation techniques.Smoothness of geometry shape and satisfactory quality of grid were achieved from two-and three-dimensional cases.An optimization framework was then constructed by adopting a surrogate model and optimization algorithms.The aerodynamic shape optimization of a hypersonic lifting body was utilized as a demonstration case for the developed framework.The result of single objective optimization using adaptive simulated annealing algorithm shows that the lift-drag ratio has an increase of 1.28% with a constraint on the volume. Besides,multi-objective optimization is carried out by using NSGA-II algorithm,and the Pareto solutions about volume and lift-drag ratio are obtained. One of the typical solutions on the Pareto front shows that the lift-drag ratio has an increase of 2.93% and the volume has an increase of 2. 49%. Optimization of the lifting body in this work shows the usability of the free form deformation technique and the good practicality of the optimization framework.
引文
[1]Samareh J A.Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization[J].AIAA Journal,2001,39(5):877-884.
    [2]Taira T,Jeong S,Obayashi S,et al.GUI-based geometry deformation tool for modification of aircraft configurations[R].AIAA 2013-0619.
    [3]Lyu Z,Martins J.RANS-based aerodynamic shape optimization of a blended-wing-body aircraft[R].AIAA 2013-2586.
    [4]王丹,白俊强,黄江涛.FFD方法在气动优化设计中的应用[J].中国科学:物理学力学天文学,2014,44(3):267-277.
    [5]黄江涛,高正红,白俊强,等.基于任意空间属性FFD技术的融合式翼稍小翼稳健型气动优化设计[J].航空学报,2013,34(1):37-45.
    [6]王元元,张彬乾,郭兆电,等.基于FFD技术的大型运输机上翘后体气动优化设计[J].航空学报,2013,34(8):1806-1814.
    [7]夏陈超,赵文文,陈伟芳,等.类HTV-2升力体参数化建模与网格自动生成研究[C]//第十五届全国激波与激波管学术交流会文集.杭州,2012:503-508.
    [8]Byun C,Guruswamy G P.A parallel,multi-block,moving grid method for aeroelastic applications on full aircraft[R].AIAA98-4782.
    [9]Tsai H M,F.Wong A S,Cai J,et al.Unsteady flow calculations with a parallel multiblock moving mesh algorithm[J].AIAA Journal,2001,39(6):1021-1029.
    [10]Zeng D,Ethier C R.A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains[J].Finite Elements in Analysis and Design,2005,41(11):1118-1139.
    [11]Liu X,Qin N,Xia H.Fast dynamic grid deformation based on Delaunay graph mapping[J].Journal of Computational Physics,2006,211(2):405-423.
    [12]Kinney D.Aerodynamic shape optimization of hypersonic vehicles[R].AIAA 2006-239.
    [13]张珍铭,丁运亮,刘毅.升力体外形设计的代理模型优化方法[J].宇航学报,2011,32(7):1435-1444.
    [14]马洋,杨涛,张青斌.高超声速滑翔式升力体外形设计与优化[J].国防科技大学学报,2014,36(2):34-40.
    [15]杨希祥,周张,彭科.基于Kriging方法的整流罩气动外形设计优化[J].固体火箭技术,2014,37(2):167-171.
    [16]Leary S J,Bhaskar A,Keane A J.Global approximation and optimization using adjoint computational fluid dynamics codes[J].AIAA Journal,2004,42(3):631-641.
    [17]成沉,鲍福廷,刘旸,等.基于响应面法的喉栓式喷管型面优化设计[J].固体火箭技术,2014,37(1):47-51.
    [18]Sederberg T W,Parry S R.Free-form deformation of solid geometric models[J].Computer Graphics,1986,20(4):151-160.
    [19]Thompson J F,Soni B K,Weatherill N P.Handbook of grid generation[M].CRC Press,1998.
    [20]Chaderjian N M,Guruswamy G P.Transonic Navier-Stokes computations for an oscillating wing using zonal grids[J].Journal of Aircraft,1992,29(3):326-335.
    [21]Murphy K J,Nowak R J,Thompson R A,et al.X-33 hypersonic aerodynamic characteristics[J].Journal of Spacecraft and Rockets,2001,38(5):670-683.
    [22]Menter F R,Kuntz M,Langtry R.Ten years of industrial experience with the SST turbulence model[C]//Proceedings of the 4th International Symposium on Turbulence,Heat and Mass Transfer.West Redding,2003:625-632.
    [23]Ingber L.Adaptive simulated annealing(ASA):Lessons learned[J].Control and Cybernetics,1996,25(1):33-54.
    [24]Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700