快捷两步法制备金纳米电极用于活体多巴胺检测(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Facile Strategy for Two-Step Fabrication of Gold Nanoelectrode for in Vivo Dopamine Detection
  • 作者:关利浩 ; 王超 ; 张望 ; 蔡雨露 ; 李凯 ; 林雨青
  • 英文作者:GUAN Li-hao;WANG Chao;ZHANG Wang;CAI Yu-lu;LI Kai;LIN Yu-qing;Department of Chemistry, Capital Normal University;
  • 关键词:离子溅射 ; 化学沉积 ; 金纳米电极 ; 活体分析 ; 多巴胺
  • 英文关键词:ion sputtering;;wet deposition;;gold nanoelectrode;;in vivo;;dopamine
  • 中文刊名:DHXX
  • 英文刊名:Journal of Electrochemistry
  • 机构:首都师范大学化学系;
  • 出版日期:2019-05-07 16:30
  • 出版单位:电化学
  • 年:2019
  • 期:v.25;No.112
  • 基金:financially supported by National Natural Science Foundation (21575090);; High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan (CIT&TCD20190330);; Scientific Research Project of Beijing Educational Committee (KM201810028008);; Youth Innovative Research Team of Capital Normal University and Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds (19530050179, 025185305000/195)
  • 语种:英文;
  • 页:DHXX201902009
  • 页数:8
  • CN:02
  • ISSN:35-1172/O6
  • 分类号:109-116
摘要
用微电极进行活体检测神经化学物质属于侵入式分析,会对脑组织产生不可避免的损伤,进而在生理上产生一些信号干扰检测过程.减小电极的尺寸对于减小对脑组织的损伤非常重要.该研究报道了一种新型制备金纳米电极的方法并将其用于活体鼠脑内多巴胺分析研究.这种金纳米电极的制备过程包含两步:1)通过离子溅射在毛细管的尖端覆盖一层金种子;2)把覆盖有金种子的毛细管浸入氯金酸和盐酸羟胺混合溶液中湿法沉积生成连续导电金膜.制备好的纳米电极尖端约300~400 nm.该金纳米电极可以应用于多巴胺的检测,并且在多巴胺浓度1.0~56.0μmol·L~(-1)范围内有很好的线性响应,最低检测限低至0.14μmol·L~(-1)(信噪比=3).该金纳米电极具有优异的电化学性能,可以成功的应用于检测鼠脑纹状体儿茶酚胺的释放.
        In vivo monitoring neurochemicals with microelectrode is invasive and the damage to brain tissue may inevitably cause disturbance signals physiologically to the measurement. It is of great importance to reduce the electrode size and to decrease the damage. This study demonstrates a novel nanoelectrode preparation methodology for in vivo monitoring dopamine(DA) fluctuation in the living brain of rats with high dependability. The fabrication process of the gold nanoelectrode involving a few minutes consists of only two steps: 1) growing gold nanoseeds on surface of tip of glassy capillary by ion sputtering; 2) wet depositing a continuous conductive gold film composed of gold nanoparticles by dipping the capillary with gold nanoseeds into a freshly mixed chloroauric acid and hydroxylamine hydrochloride for one minute. The tip size of the well-prepared gold nanoelectrode was 300 ~400 nanometers. The gold nanoelectrode was able to detect DA and showed a good linearity with the concentration of DA ranging from 1.0 to 56.0 μmol·L~(-1) with a limit of detection as low as 0.14 μmol·L~(-1)(S/N=3). Benefiting from the excellent electrochemical performance, the gold nanoelectrode was successfully employed for catecholamine release in striatum of living rat brain.
引文
[1]Liu X M,Xiao T F,Wu F,et al.Ultrathin cell-membrane-mimic phosphorylcholine polymer film coating enables large improvements for in vivo electrochemical detection[J].Angewandte Chemie International Edition,2017,56(39):11802-11806.
    [2]Zhou D M(周道民),Greenber R.Electrochemistry in neural stimulation by biomedical implant[J].Journal of Electrochemistry(电化学),2011,17(3):249-262.
    [3]Lin Y Q,Trouillon R,Svensson M I,et al.Carbon-ring microelectrode arrays for electrochemical imaging of single cell exocytosis:fabrication and characterization[J].Analytical Chemistry,2012,84(6):2949-2954.
    [4]Lin C J(林昌健),Chen L J(陈丽江),Du R G(杜荣归),et al.Microelectrode studies on the pitting corrosion process of stainless steel[J].Journal of Electrochemistry(电化学),1998,4(1):12-17.
    [5]Wei Y L(卫应亮),Shao C(邵晨),Feng H(冯辉).Study on the electrogeneration and properties of superoxide ion in aprotic media by using carbon nanotubes powder microelectrode[J].Journal of Electrochemistry(电化学),2007,13(2):207-211.
    [6]Biran R,Martin D C,Tresco P A.Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays[J].Experimental Neurology,2005,195(1):115-126.
    [7]He R Q,Tang H F,Jiang D C,et al.Electrochemical visualization of intracellular hydrogen peroxide at single cells[J].Analytical Chemistry,2016,88(4):2006-2009.
    [8]Li X C,Majdi S,Dunevall J,et al.Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes[J].Angewandte Chemie International Edition,2015,54(41):11978-11982.
    [9]Li Y,Hu K K,Yu Y,et al.Direct electrochemical measurements of reactive oxygen and nitrogen species in nontransformed and metastatic human breast cells[J].Journal of the American Chemical Society,2017,139(37):13055-13062.
    [10]Zhang X W,Qiu Q F,Jiang H,et al.Real-time intracellular measurements of ROS and RNS in living cells with single core-shell nanowire electrodes[J].Angewandte Chemie International Edition,2017,56(42):12997-13000.
    [11]Xiong L H(熊丽华),Shi C H(施财辉),Li X Q(李筱琴),et al.Gold electrodeposition on microelectrodes[J].Journal of Electrochemistry(电化学),1998,4(1):25-29.
    [12]Ding S S,Liu Y Z,Ma C R,et al.Development of glasssealed gold nanoelectrodes for in vivo detection of dopamine in rat brain[J].Electroanalysis,2018,30(6):1041-1046.
    [13]Ayata S,Ensinger W.Ion beam sputtering coating in combination with sol-gel dip coating of Al alloy tube inner walls for corrosion and biological protection[J].Surface and Coatings Technology,2018,340:121-125.
    [14]Hasanzadeh M,Shadjou N,Guardia M D L.Current advancement in electrochemical analysis of neurotransmitters in biological fluids[J].Tr AC Trends in Analytical Chemistry,2017,86:107-121.
    [15]Wightman R M,May L J,Michael A C.Detection of dopamine dynamics in the brain[J].Analytical Chemistry,1988,60(13):769A-793A.
    [16]Nestler E J.Hard target:Understanding dopaminergic neurotransmission[J].Cell,1994,79(6):923-926.
    [17]Hyman S E,Malenka R C.Addiction and the brain:The neurobiology of compulsion and its persistence[J].Nature Reviews Neuroscience,2001,2(10):695-703.
    [18]Wang K Q,Zhao X,Li B,et al.Ultrasonic-aided fabrication of nanostructured Au-ring microelectrodes for monitoring transmitters released from single cells[J].Analytical Chemistry,2017,89(17):8683-8688.
    [19]Wang K,Xiao T F,Yue Q W,et al.Selective amperometric recording of endogenous ascorbate secretion from a single rat adrenal chromaffin cell with pretreated carbon fiber microelectrodes[J].Analytical Chemistry,2017,89(17):9502-9507.
    [20]Xiao T F,Jiang Y N,Ji W L,et al.Controllable and reproducible sheath of carbon fibers with single-walled carbon nanotubes through electrophoretic deposition for in vivo electrochemical measurements[J].Analytical Chemistry,2018,90(7):4840-4846.
    [21]Zhao X,Wang K Q,Li B,et al.Fabrication of a flexible and stretchable nanostructured gold electrode using a facile ultraviolet-irradiation approach for the detection of nitric oxide released from cells[J].Analytical Chemistry,2018,90(12):7158-7163.
    [22]Lin Y Q,Wang K Q,Xu Y A,et al.Facile development of Au-ring microelectrode for in vivo analysis using non-toxic polydopamine as multifunctional material[J].Biosensors and Bioelectronics,2016,78:274-280.
    [23]Keithley R B,Takmakov P,Bucher E S,et al.Higher sensitivity dopamine measurements with faster-scan cyclic voltammetry[J].Analytical Chemistry,2011,83(9):3563-3571.
    [24]Hu G Z,Liu Y C,Zhao J,et al.Selective response of dopamine in the presence of ascorbic acid on l-cysteine self-assembled gold electrode[J].Bioelectrochemistry,2006,69(2):254-257.
    [25]Barlow S T,Louie M,Hao R,et al.Electrodeposited gold on carbon-fiber microelectrodes for enhancing amperometric detection of dopamine release from pheochromocytoma cells[J].Analytical Chemistry,2018,90(16):10049-10055.
    [26]Phan N T N,Li X C,Ewing A G.Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging[J].Nature Reviews Chemistry,2017,1(6):UNSP 0048.
    [27]Liu J T(刘俊桃),Liu Y L(刘艳玲),Cheng Z(程治),et al.Electrochemical monitoring of cell wall-regulated transient extracellular oxidative burst from single plant cells[J].Journal of Electrochemistry(电化学),2014,21(1):29-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700