四质量硅微陀螺阵列的正交误差校正系统分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quadrature Error Correction System Analysis of Four-quality Silicon Micro-gyroscope Array
  • 作者:季奇波 ; 张印强 ; 杨波 ; 李丽娟 ; 刘琴 ; 周中鑫
  • 英文作者:JI Qi-bo;ZHANG Yin-qiang;YANG Bo;LI Li-juan;LIU Qin;ZHOU Zhong-xin;College of Electrical Engineering and Control Science,Nanjing Tech University;College of Instrument Science and Engineering,Southeast University;
  • 关键词:硅微阵列陀螺仪 ; 正交误差 ; 静电-结构耦合 ; 自适应模糊PID ; 正交耦合刚度校正
  • 英文关键词:silicon micro-gyroscope array;;quadrature error;;electrostatic-structural coupling effect;;adaptive Fuzzy-PID;;quadrature coupling stiffness correction
  • 中文刊名:YBJS
  • 英文刊名:Instrument Technique and Sensor
  • 机构:南京工业大学电气工程与控制科学学院;东南大学仪器科学与工程学院;
  • 出版日期:2019-01-15
  • 出版单位:仪表技术与传感器
  • 年:2019
  • 期:No.432
  • 基金:国家自然科学基金项目(61571156);; 航空科学基金项目(20150869005);; 江苏省高校自然科学研究项目(12KJD460003)
  • 语种:中文;
  • 页:YBJS201901029
  • 页数:5
  • CN:01
  • ISSN:21-1154/TH
  • 分类号:126-130
摘要
为了减小正交误差对硅微阵列陀螺仪测量精度的影响,提高系统性能,采用自适应模糊PID控制和正交耦合刚度校正法研究硅微阵列陀螺仪的正交误差校正问题。首先,分析了硅微阵列陀螺仪正交误差的产生原因及其对系统性能的影响;其次,阐述了基于静电结构耦合效应的正交耦合刚度校正法的工作原理,设计了校正电极;最后,基于自适应模糊PID控制设计了正交误差校正系统,根据系统不同的偏差E和偏差率Ec实现了PID参数的自整定。Simulink仿真结果表明基于自适应模糊PID的正交误差校正系统的动态响应速度是常规PID的3倍,超调量是常规PID的十分之一,有效地实现了正交误差校正,提高了系统的自适应性。
        In order to reduce the influence of quadrature error on the measurement accuracy of silicon micro-gyroscope array and improve the system performance,the adaptive Fuzzy-PID controller and quadrature coupling stiffness correction method were used to study the quadrature error correction. Firstly,the causes of quadrature error of silicon micro-gyroscope array and its effect on system performance were analyzed. Secondly,the working principle of quadrature coupling stiffness correction method based on electrostatic structure coupling effect was described,and the calibration electrode was designed. At last,the quadrature error correction system was designed based on the adaptive Fuzzy-PID controller,and the PID parameters were self-tuned according to the different deviation E and the deviation rate Ecof the system. Simulink simulation results show that the dynamic response speed of the system with adaptive fuzzy PID is three times that of the conventional PID,and the overshoot is one tenth of the conventional PID. The quadrature error correction is realized effectively and the adaptive performance is improved.
引文
[1] ANDRIANAKIS C,SEYMER P,STAVROU A. Adaptive Control of a Vibratory Angle Measuring Gyroscope[J]. Sensors,2010,10(9):8478-8490.
    [2]巫华芳.基于三轴陀螺仪传感器的无线位置伺服算法应用[J].仪表技术与传感器,2016(1):13-15.
    [3] CHENG Y JIANG,L XUE,H L CHANG. Signal processing of mems gyroscope arrays to improve accuracy using a 1st order markov for rate signal modeling[J]. Sensors,2012,12(2):1720-1737.
    [4]张印强,吉训生,王寿荣.硅微阵列陀螺仪的信号滤波技术[J].东南大学学报(自然科学版),2013,43(6):1224-1226.
    [5] ALEXANDER A T,IGOR P P,SERGEI A Z,et al. Low-dissipation silicon tuning fork gyroscopes for rate and whole angle measurements[J]. IEEE Sensors Journal,2011,11(11):2763-2770.
    [6] MOHAMMADI Z,SALARIEH H. Investigating the effects of quadrature error in parametrically and harmonically excited MEMS rate gyroscopes[J]. Measurement,2016,87(3):152-175.
    [7]倪云舫,李宏生,杨波,等.硅微陀螺正交误差直流校正设计与分析[J].中国惯性技术学报,2014,22(1):104-108.
    [8]曹慧亮,李宏生,申冲,等.双质量硅微机械陀螺仪正交校正系统设计及测试[J].中国惯性技术学报,2015,23(4):544-549.
    [9]王晓雷,杨成,李宏生.硅微陀螺仪正交误差校正系统的分析与设计[J].中国惯性技术学报,2013(6):822-827.
    [10] GHANBARI A,MOGHANNIBAVILOLYAEI M R. Adaptive fuzzy terminal sliding-mode control of MEMS-axis gyroscope with extended Kalman filter observer[J]. Systems Science&Control Engineering An Open Access Journal,2014,2(1):183-191.
    [11] WANG S,FEI J. Robust adaptive sliding mode control of MEMS gyroscope using T-S fuzzy model[J]. Nonlinear Dynamics,2014,77(1-2):361-371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700