佛山市典型铝型材行业表面涂装VOCs排放组成
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Source Profiles and Chemical Reactivity of Volatile Organic Compounds from Surface Coating of Aluminum Products in Foshan,China
  • 作者:李霞 ; 苏伟健 ; 黎碧霞 ; 龙淼 ; 黎丽莉 ; 张洲 ; 于跃刚 ; 王云鹏 ; 王新明
  • 英文作者:LI Xia;SU Wei-jian;LI Bi-xia;LONG Miao;LI Li-li;ZHANG Zhou;YU Yue-gang;WANG Yun-peng;WANG Xin-ming;Environmental Technological Center of Nanhai District in Foshan City;Guangzhou Institute of Geochemistry,Chinese Academy of Sciences;Changsha Center for Mineral Resources Exploration,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences;Hunan Chengyuan Testing Co.,Ltd.;
  • 关键词:铝型材行业 ; 表面涂装 ; 挥发性有机物(VOCs) ; 源成分谱 ; 臭氧生成潜势(OFP)
  • 英文关键词:aluminum products;;surface coating;;volatile organic compounds(VOCs);;source profile;;ozone formation potential(OFP)
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:佛山市南海区环境技术中心;中国科学院广州地球化学研究所;中国科学院广州地球化学研究所长沙矿产资源勘查中心;湖南澄源检测有限公司;
  • 出版日期:2018-06-21 15:33
  • 出版单位:环境科学
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(41571130031,41703112);; 有机地球化学国家重点实验室自主课题项目(SKLOGA201603A);; 佛山市南海区环境技术中心自主课题项目(NHHBJSZX-2017-04)
  • 语种:中文;
  • 页:HJKZ201812006
  • 页数:10
  • CN:12
  • ISSN:11-1895/X
  • 分类号:48-57
摘要
选取佛山市典型铝型材行业不同表面涂装工艺(溶剂型涂料涂装、水性涂料涂装、电泳涂装、粉末喷涂)有组织废气VOCs进行了采样分析.结果表明,溶剂型涂料涂装废气VOCs浓度(63. 90~149. 67 mg·m~(-3))要远大于其他3种涂装工艺(2. 99~21. 93 mg·m~(-3)). VOCs组成来看,溶剂型涂料涂装废气VOCs以芳香烃为主,比例在52. 32%~71. 55%之间,主要污染物包括甲苯、乙苯、二甲苯等苯系物和乙酸乙酯等含氧挥发性有机物(OVOCs).水性涂料涂装废气以OVOCs为主,如乙酸乙酯(48. 59%)、四氢呋喃(8. 43%),芳香烃比例(11. 32%)远低于溶剂型涂料涂装废气.异丙醇是电泳涂装废气中最主要的VOCs化合物,贡献比例高达81. 19%.而粉末涂料涂装废气VOCs污染物主要是丙酮(30. 25%),以及丙烷(15. 48%)、乙烯(12. 15%)、乙烷(9. 35%)、正丁烷(5. 16%)等C2~C4的烷烃和烯烃.臭氧生成潜势(OFP)计算结果表明,溶剂型涂料涂装废气排放单位质量VOCs的臭氧生成潜势(OFP,以O3/VOCs计,下同)最高(3. 89 g·g~(-1)),其次是粉末喷涂(2. 53 g·g~(-1)),而水性涂料涂装和电泳涂装则较低(1. 31 g·g~(-1)和0. 85 g·g~(-1)).溶剂型涂料涂装废气中芳香烃对OFP贡献比例高达93. 28%,有9种C7~C10芳香烃位列OFP排名前10化合物;水性涂料涂装废气中乙酸乙酯、间/对-二甲苯和甲苯的臭氧生成潜势占比最高,分别为23. 24%、21. 76%和17. 07%;粉末涂料涂装废气中的关键活性组分则为乙烯、丙烯和1-丁烯等低碳烯烃,烯烃对其OFP贡献为71. 11%;电泳涂料涂装废气中异丙醇的OFP贡献(65. 08%)明显高于其他组分(<6%).
        Volatile organic compounds(VOCs) samples were collected and analyzed for the surface coating processes of aluminum products in Foshan. The concentration levels of VOCs from solvent-based coating(63. 90-149. 67 mg·m~(-3)) are much higher than that from water-based,electrophoretic,and powder coating(2. 99-21. 93 mg·m~(-3)). With respect to the VOC composition,aromatics are the main VOC group of solvent-based coating emission, ranging from 52. 32%-71. 55%. Typical species include toluene,ethylbenzene,xylene,and ethyl acetate. The VOCs emitted from water-based coating are mainly oxygenated VOCs,such as ethyl acetate(48. 59%) and tetrahydrofuran(8. 43%),while the percentage of aromatics(11. 32%) is lower than that of solvent-based coating. Isopropanol is the most abundant species of electrophoretic coating emissions,accounting for up to 81. 19% of the VOCs. The major VOC compounds of powder coating processes are acetone(30. 25%),propane(15. 48%),ethylene(12. 15%),ethane(9. 35%),and n-butane(5. 16%). The calculation of the ozone formation potential(OFP) shows that the solvent-based coating has the highest OFP(3. 89 g·g~(-1)),followed by powder coating(2. 53 g·g~(-1)),while water-based and electrophoretic coating have lower OFPs(1. 31 and 0. 85 g·g~(-1),respectively). The most important contributor to OFP of solvent-based coating are aromatics,especially C7-C10 aromatics. The major contributors of water-based coating are ethyl acetate,m/p-xylenes,and toluene,with contributions of23. 24%,21. 76%,and 17. 07%,respectively. The key reactive components of powder coating are ethylene,propene,and 1-butene;the sum of alkenes accounts for 71. 11% of the OFP. With respect to the contribution of VOCs emitted from electrophoretic coating tothe OFP,the percentage of isopropanol(65. 08%) is significantly larger than that of other species(< 6%).
引文
[1] Wang S X,Hao J M. Air quality management in China:issues,challenges,and options[J]. Journal of Environmental Sciences,2012,24(1):2-13.
    [2] Wang T,Xue L K,Brimblecombe P,et al. Ozone pollution in China:a review of concentrations, meteorological influences,chemical precursors, and effects[J]. Science of the Total Environment,2017,575:1582-1596.
    [3] Wang J D,Zhao B,Wang S X,et al. Particulate matter pollution over China and the effects of control policies[J].Science of the Total Environment,2017,584-585:426-447.
    [4]中华人民共和国环境保护部. 2016中国环境状况公报[EB/OL]. http://www. mee. gov. cn/gkml/hbb/qt/201706/t20170605_415442. htm,2017-06-05.
    [5] Guo H,Ling Z H,Cheng H R,et al. Tropospheric volatile organic compounds in China[J]. Science of the Total Environment,2017,574:1021-1043.
    [6] Zhang Y L, Wang X M, Blake D R, et al. Aromatic hydrocarbons as ozone precursors before and after outbreak of the2008 financial crisis in the Pearl River Delta region,south China[J]. Journal of Geophysical Research:Atmospheres,2012,117(D15):D15306.
    [7]吕子峰,郝吉明,段菁春,等.北京市夏季二次有机气溶胶生成潜势的估算[J].环境科学,2009,30(4):969-975.LüZ F,Hao J M,Duan J C,et al. Estimate of the formation potential of secondary organic aerosol in Beijing summertime[J].Environmental Science,2009,30(4):969-975.
    [8]吴方堃,王跃思,安俊琳,等.北京奥运时段VOCs浓度变化、臭氧产生潜势及来源分析研究[J].环境科学,2010,31(1):10-16.Wu F K,Wang Y S,An J L,et al. Study on concentration,ozone production potential and sources of VOCs in the atmosphere of Beijing during Olympics period[J]. Environmental Science,2010,31(1):10-16.
    [9] Du Z J,Mo J H,Zhang Y P. Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China[J]. Environment International,2014,73:33-45.
    [10]李雷,李红,王学中,等.广州市中心城区环境空气中挥发性有机物的污染特征与健康风险评价[J].环境科学,2013,34(12):4558-4564.Li L,Li H,Wang X Z,et al. Pollution characteristics and health risk assessment of atmospheric VOCs in the downtown area of Guangzhou,China[J]. Environmental Science,2013,34(12):4558-4564.
    [11] Wei W,Wang S X,Hao J M,et al. Projection of anthropogenic volatile organic compounds(VOCs)emissions in China for the period 2010-2020[J]. Atmospheric Environment,2011,45(38):6863-6871.
    [12] Liu Z,Wang Y H,Vrekoussis M,et al. Exploring the missing source of glyoxal(CHOCHO)over China[J]. Geophysical Research Letters,2012,39(10):L10812.
    [13] Mo Z W, Shao M, Liu Y, et al. Species-specified VOC emissions derived from a gridded study in the Pearl River Delta,China[J]. Scientific Reports,2018,8(1):2963.
    [14]魏巍,王书肖,郝吉明.中国人为源VOC排放清单不确定性研究[J].环境科学,2011,32(2):305-312.Wei W,Wang S X,Hao J M. Uncertainty analysis of emission inventory for volatile organic compounds from anthropogenic sources in China[J]. Environmental Science,2011,32(2):305-312.
    [15] Li M, Zhang Q, Streets D G, et al. Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms[J]. Atmospheric Chemistry and Physics,2014,14(11):5617-5638.
    [16] Zhang Z,Zhang Y L,Wang X M,et al. Spatiotemporal patterns and source implications of aromatic hydrocarbons at six rural sites across China's developed coastal regions[J]. Journal of Geophysical Research:Atmospheres,2016,121(11):6669-6687.
    [17]莫梓伟,邵敏,陆思华.中国挥发性有机物(VOCs)排放源成分谱研究进展[J].环境科学学报,2014,34(9):2179-2189.Mo Z W, Shao M, Lu S H. Review on volatile organic compounds(VOCs)source profiles measured in China[J]. Acta Scientiae Circumstantiae,2014,34(9):2179-2189.
    [18] Scheff P A,Wadden R A,Bates B A,et al. Source fingerprints for receptor modeling of volatile organics[J]. JAPCA,1989,39(4):469-478.
    [19] Fujita E M,Watson J G,Chow J C,et al. Validation of the chemical mass balance receptor model applied to hydrocarbon source apportionment in the Southern California air quality study[J]. Environmental Science&Technology,1994,28(9):1633-1649.
    [20] Watson J G,Chow J C,Fujita E M. Review of volatile organic compound source apportionment by chemical mass balance[J].Atmospheric Environment,2001,35(9):1567-1584.
    [21] Theloke J, Friedrich R. Compilation of a database on the composition of anthropogenic VOC emissions for atmosphere modeling in Europe[J]. Atmospheric Environment,2007,41(19):4148-4160.
    [22] Na K,Kim Y P,Moon I,et al. Chemical composition of major VOC emission sources in the Seoul atmosphere[J].Chemosphere,2004,55(4):585-594.
    [23] Simon H,Beck L,Bhave P V,et al. The development and uses of EPA's SPECIATE database[J]. Atmospheric Pollution Research,2010,1(4):196-206.
    [24] Yuan B,Shao M,Lu S H,et al. Source profiles of volatile organic compounds associated with solvent use in Beijing,China[J]. Atmospheric Environment, 2010, 44(15):1919-1926.
    [25]田亮,魏巍,程水源,等.典型有机溶剂使用行业VOCs成分谱及臭氧生成潜势[J].安全与环境学报,2017,17(1):314-320.Tian L,Wei W,Cheng S Y,et al. Source profiles and ozone formation potential of volatile organic compounds from the use of solvents in typical industry[J]. Journal of Safety and Environment,2017,17(1):314-320.
    [26] Wang H L,Qiao Y Z,Chen C H,et al. Source profiles and chemical reactivity of volatile organic compounds from solvent use in Shanghai,China[J]. Aerosol and Air Quality Research,2014,14(1):301-310.
    [27]莫梓伟,牛贺,陆思华,等.长江三角洲地区基于喷涂工艺的溶剂源VOCs排放特征[J].环境科学,2015,36(6):1944-1951.Mo Z W, Niu H, Lu S H, et al. Process-based emission characteristics of volatile organic compounds(VOCs)from paint industry in the Yangtze River Delta,China[J]. Environmental Science,2015,36(6):1944-1951.
    [28] Zheng J Y,Yu Y F,Mo Z W,et al. Industrial sector-based volatile organic compound(VOC)source profiles measured in manufacturing facilities in the Pearl River Delta,China[J].Science of the Total Environment,2013,456-457:127-136.
    [29] Zhong Z M,Sha Q E,Zheng J Y,et al. Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China[J]. Science of the Total Environment,2017,583:19-28.
    [30] HJ 732-2014,固定污染源废气挥发性有机物的采样气袋法[S].HJ 732-2014, Emission from stationary sources-sampling of volatile organic compounds-bags method[S].
    [31] EPA Method 18,Measurement of gaseous organic compound emissions by gas chromatography[S].
    [32]高宗江.典型工业涂装行业VOCs排放特征研究[D].广州:华南理工大学,2015.Gao Z J. Source characteristics of VOC emissions from typical industrial painting sources[D]. Guangzhou:South China University of Technology,2015.
    [33]王震文.膜生物过滤技术净化工业废气中挥发性有机化合物性能研究[D].上海:华东理工大学,2014.
    [34]高宗江,李成,郑君瑜,等.工业源VOCs治理技术效果实测评估[J].环境科学研究,2015,28(6):994-1000.Gao Z J,Li C,Zheng J Y,et al. Evaluation of industrial VOCs treatment techniques by field measurement[J]. Research of Environmental Sciences,2015,28(6):994-1000.
    [35]栾志强,郝郑平,王喜芹.工业固定源VOCs治理技术分析评估[J].环境科学,2011,32(12):3476-3486.Luan Z Q, Hao Z P, Wang X Q. Evaluation of treatment technology of volatile organic compounds for fixed industrial resources[J]. Environmental Science,2011,32(12):3476-3486.
    [36] Carter W P L. Development of the SAPRC-07 chemical mechanism[J]. Atmospheric Environment,2010,44(40):5324-5335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700