颗粒尺寸对B_4C增强铝基中子吸收材料界面反应与力学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of particle size on interfacial reaction and mechanical properties of B_4C reinforced aluminum matrix neutron absorber materials
  • 作者:童攀 ; 林立 ; 王全兆 ; 周杨韬 ; 肖伯律 ; 马宗义
  • 英文作者:TONG Pan;LIN Li;WANG Quanzhao;ZHOU Yangtao;XIAO Bolv;Ma Zongyi;School of Materials Science and Engineering,Shenyang University of Technology;Institute of Metal Research,Chinese Academy of Science;
  • 关键词:粉末冶金 ; 颗粒尺寸 ; 致密度 ; 界面反应 ; 力学性能 ; 铝基复合材料
  • 英文关键词:powder metallurgy;;particle size;;density;;interfacial reaction;;mechanical properties;;aluminum matrix composites
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:沈阳工业大学材料科学与工程学院;中国科学院金属研究所;
  • 出版日期:2018-04-18 08:38
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金委员会-辽宁省人民政府联合基金(U1508216);; 国家自然科学基金面上项目(51771194);; 中国科学院青年创新促进会会员(2016179)
  • 语种:中文;
  • 页:FUHE201904016
  • 页数:11
  • CN:04
  • ISSN:11-1801/TB
  • 分类号:163-173
摘要
采用粉末冶金真空热压法制备了B_4C质量分数为31%、平均颗粒尺寸分别为6.5μm、9.3μm、17.3μm、28μm、39.5μm的纯Al和6061Al基体的复合材料。对复合材料进行微观结构和力学性能检测,结果表明:所有复合材料的B_4C颗粒在基体中都均匀分布,且致密度都达到99%以上;对于纯Al基复合材料,随着颗粒尺寸增加,其致密度和塑性逐渐增加,强度逐渐下降;对于6061Al基复合材料,致密度随着颗粒尺寸的增加稍有降低,其强度和塑性受颗粒尺寸和热压温度共同影响,当热压温度610℃时,界面反应严重,随B_4C颗粒尺寸增加,强度先下降后上升,塑性先上升后下降;当热压温度580℃时,界面反应轻微,复合材料强度逐渐下降,塑性逐渐上升。颗粒尺寸、界面反应和基体材料等均影响B_4C增强铝基复合材料的力学性能。
        The pure Al and 6061 Al matrix composites with 31%B_4 C particle sizes of 6.5-39.5μm were respectively prepared by powder metallurgy.The microstructure and mechanical properties of composites were tested.The results show that the B_4 C particles were uniformly distributed in the matrix of all composites,and the densities reached above 99%.For pure Al matrix composites,with the increase of particle size,the densities and ductility increase gradually,and the strength decreases gradually.For 6061 Al matrix composites,the densities increase slightly with the increase of particle size,and its strength and ductility are affected by the particle size and the hot-pressing temperature.When hot-pressing temperature is 610℃,the interface reaction is serious.With the increase of B_4 C particle size,the strength decreases first and then increases,while the ductility increases first and then decreases.When hot-pressing temperature is 580℃,the interface reaction is slight.The strength decreases gradually,and the ductility gradually increased gradually.The particle size,interface reaction and matrix material affect the mechanical properties of B_4 C reinforced aluminum matrix composites.
引文
[1]Handbook of neutron absorber materials for spent nuclear fuel transportation and storage applications-2009edition[M].EPRI:Palo Alto,CA.2009:1019110.
    [2]李刚,简敏,王美玲,等.反应堆乏燃料贮运用中子吸收材料的研究进展[J].材料导报:综述篇,2011,25(13):110-113.LI Gang,JIAN Min,WANG Meiling,et al.Research progress of neutron absorbing materials for storage and transport of reactor spent fuel[J].Materials Review:A review,2011,25(13):110-113(in Chinese).
    [3]徐鸿.高储存密度乏燃料组件储架系统的结构特点与分析[J].核动力工程,1995(4):353-357.XU Hong.Structure characteristics and analysis of high storage density spent fuel assembly system[J].Nuclear Power Engineering,1995(4):353-357(in Chinese).
    [4]LEE B,KANG S.Low-temperature processing of B4C-Al composites via infiltration technique[J].Materials Chemistry and Physics,2001,67(1):249-255.
    [5]ROBINO C,CIESLAK M.High-temperature metallurgy of advanced borated stainless steels[J].Metallurgical and Materials Transactions A,1995,26(7):1673-1685.
    [6]POZDNIAKOV A V,LOTFY A,Qadir A.Effect of the B4C content on the structure and thermal expansion coefficient of the Al-5%Cu alloy-based metal-matrix composite material[J].Physics of Metals and Metallography,2016,117(8):783-788.
    [7]OZKAYA S,CANAKCI A.Effect of the B4C content and the milling time on the synthesis,consolidation and mechanical properties of AlCuMg-B4C nanocomposites synthesized by mechanical milling[J].Powder Technology,2016,297:8-16.
    [8]LI Yuze,WANG Quanzhao,WANG Wenguang,et al.Interfacial reaction mechanism between matrix and reinforcement in B4C/6061Al composites[J].Materials Chemistry and Physics,2015,154:107-117.
    [9]SONG Min,HUANG Baiyun.Effects of particle size on the fracture toughness of SiCp/Al alloy metal matrix composites[J].Materials Science and Engineering A,2008,488:601.
    [10]MILAN M,BOWEN P.Tensile and fracture toughness properties of SiCp reinforced Al alloys:Effects of particle size,particle volume fraction,and matrix strength[J].Journal of Materials Engineering and Performance,2004,13:775.
    [11]MOHANAKUMARA C K,RAJASHEKAR H.Development and Mechanical Properties of SiC Reinforced Cast and Extruded Al Based Metal Matrix Composites[J].Procedia Material Science,2014,5:934-943.
    [12]李倩倩.粉末冶金法制备SiC/Sn/Al复合材料及其性能的研究[D].哈尔滨:哈尔滨工业大学,2013.LI Qianqian.Preparation and properties of SiC/Sn/Al composite material by powder metallurgy[D].Harbin:Harbin Institute of Technology,2013(in Chinese).
    [13]谢文,刘越,张振伟,李德松,毕敬.挤压温度对15vol%SiCp/Mg-9Al镁基复合材料拉伸性能与断口形貌的影响[J].复合材料学报,2006,23(6):127-133.XIE Wen,LIU Yue,ZHANG Zhenwei,LI Desong,BI Jing.Effect of extrusion temperature on tensile properties and fracture morphology of 15vol%SiCp/Mg-9Al magnesium matrix composites[J].Acta Materiae Compositae Sinica,2006,23(6):127-133(in Chinese).
    [14]李玉泽.B4C/6061Al复合材料的制备及搅拌摩擦焊接[D].沈阳:中国科学院金属研究所,2015.LI Yuze.Fabrication and friction stir welding of B4C/6061Al composite[D].Shenyang:Institute of Metal Research,Chinese Academy of Science,2015(in Chinese).
    [15]马俊林,钱陈豪,薛克敏.SiCP/Al基复合材料在等径角挤扭变形中的界面原子扩散行为[J].复合材料学报,2016,33(2):334-340.MA Junlin,QIAN Chenhao,XUE Kemin.Behavior of interfacial atom diffusion in SiCp/Al matrix composites deformed during equal channel angular pressing and torsion[J].Acta Materiae Compositae Sinica,2016,33(2):334-340(in Chinese).
    [16]JIANG Q C,WANG H Y,MA B X.Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy[J].Alloys and Compounds,2005,386(2):177-181.
    [17]邓坤坤,王翠菊,王晓军.SiCp/AZ91复合材料的显微组织、力学性能及强化机制[J].复合材料学报,2014,31(2):388-395.DENG Kunkun,WANG Cuiju,WANG Xiaojun.Microstructure,mechanical properties and strengthening mechanism of SiCp/AZ91composites[J].Acta Materiae Composites Sinica,2014,31(2):388-395(in Chinese).
    [18]康炘蒙,程小全,郦正能,等.SiCp/Al复合材料的拉伸性能[J].复合材料学报,2009,26(4):83-88.KANG Xinmeng,CHENG Xiaoquan,LI Zhengneng,et al.Tensile mechanical properties of SiCp/Al composites[J].Acta Materiae Composites Sinica,2009,26(4):83-88(in Chinese).
    [19]KENNEDY A R,BRAMPTON B.The reactive wetting and incorporation of B4C particles into molten aluminium[J].Scripta Materialia,2001,44(7):1077-1082.
    [20]樊建中,姚忠凯,杜善义,等.SiC颗粒增强金属基复合材料弹性模量与界面结合状况关系研究[J].复合材料学报,1988,15(2):1-5.FAN Jianzhong,YAO Zhongkai,DU Shanyi,et al.Study on the relationship between elastic modulus and interface of SiC particle reinforced metal matrix composites[J].Acta Materiae Composites Sinica,1988,15(2):1-5(in Chinese).
    [21]ASGHARZADEH H,SIMCHI A.Supersolidus liquid phase sintering of Al6061/SiC metal matrix composites[J].Powder Metallurgy,2009,52(1):28-35.
    [22]CESCHINI L, MINAK G, MORRI A.Forging of the AA2618/20vol.%Al2O3pcomposite:Effects on microstructure and tensile properties[J].Composites Science and Technology,2009,69(11):1783-1789.
    [23]SLIPENYUK A,KUPRIN V,MILMAN Y.The effect of matrix to reinforcement particle size ratio(PSR)on the microstructure and mechanical properties of a P/M processed AlCuMn/SiCpMMC[J].Materials Science and Engineering A,2004,381:165.
    [24]FOGAGNOLO J B,VELASCO F,ROBER M H.Effect of mechanical alloying on the morphology,microstructure and properties of aluminium matrix composite powders[J].Materials Science and Engineering A,2003,342:131.
    [25]BEFFORT O,LONG S,CAYRON C.Alloying effects on microstructure and mechanical properties of high volume fraction SiC-particle reinforced Al-MMCs made by squeeze casting infiltration[J].Composites Science and Technology,2007,67:737-745.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700