不同水位下隧道排水管结晶堵塞引起的衬砌应力分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Lining Stress Caused by Crystal Lization Clogging of Tunnel Drainage Pipe at Different Water Levels
  • 作者:高春君 ; 向立辉 ; 张学富 ; 周元辅 ; 刘士洋
  • 英文作者:GAO Chunjun;XIANG Lihui;ZHANG Xuefu;ZHOU Yuanfu;LIU Shiyang;School of Civil Engineering,Chongqing Jiaotong University;China Communications Second Highway Survey and Design Institute Co.,Ltd.;
  • 关键词:隧道工程 ; 地下水位 ; 隧道排水管 ; 结晶堵塞 ; 衬砌应力
  • 英文关键词:tunnel engineering;;groundwater level;;tunnel drainage pipe;;crystallization clogging;;lining stress
  • 中文刊名:CQJT
  • 英文刊名:Journal of Chongqing Jiaotong University(Natural Science)
  • 机构:重庆交通大学土木工程学院;中交第二公路勘察设计研究院有限公司;
  • 出版日期:2019-05-13
  • 出版单位:重庆交通大学学报(自然科学版)
  • 年:2019
  • 期:v.38;No.208
  • 基金:贵州省交通运输厅科技项目(2017-123-011);; 重庆市科委项目社会事业与民生保障科技创新专项(一般)(cstc2017shmsA30021);重庆市科委基础科学与前沿技术研究项目(cstc2017jcyjAX0056);; 重庆市高校优秀成果转化资助项目(KJZH17120);; 重庆市教委科学技术研究资助项目(KJ1705144)
  • 语种:中文;
  • 页:CQJT201905008
  • 页数:7
  • CN:05
  • ISSN:50-1190/U
  • 分类号:49-55
摘要
为研究不同水位下隧道排水管结晶堵塞引起的衬砌应力变化规律,通过"以板代孔"法对排水管堵塞进行模拟,研究了5种堵塞工况与4种地下水位工况下隧道衬砌应力变化规律。结果表明:不同堵塞工况与不同水位工况下隧道衬砌应力变化规律是一致的;在同一堵塞程度下,随着原始地下水位的升高,隧道衬砌应力随之增加,隧道左右拱脚处衬砌最大主应力差值随之增加,最小主应力差值随之减小;在同一水位工况下,堵塞程度75%是隧道衬砌受力变化的转折点。由此可见,由于排水管的堵塞,衬砌应力明显增加,当地下水位由于排水系统堵塞升高时,衬砌受力更为不利。因而在隧道建设过程中应重视排水系统有效排水,保障衬砌结构安全。
        In order to study the variation law of lining stress caused by crystallization clogging of tunnel drains at different water levels,the variation law of lining stress under 5 kinds of blocking conditions and 4 kinds of groundwater level conditions was studied by simulating the blockage of drainage pipes with the method of "replacing holes with plates". The results show that: the variation law of tunnel lining stress under different blocking conditions and different water level conditions is consistent. Under the same degree of blockage,with the increase of the original groundwater level,the tunnel lining stress increases,the maximum principal stress difference between the left and right arch foot of the tunnel increases,and the minimum principal stress difference decreases. Under the same water level condition,75% of the blockage degree is the turning point of the stress change of tunnel lining. It is concluded that due to the blockage of the drainage pipe,the lining stress increases obviously. When the groundwater level is increased due to the blockage of the drainage system,the lining stress is more unfavorable. Therefore,in the process of tunnel construction,attention should be paid to the effective drainage of drainage system to ensure the safety of lining structure.
引文
[1]蒋树屏.中国公路隧道数据统计[J].隧道建设,2017,37(5):643-644.JIANG Shuping. Data statistics of highway tunnel in China[J].Tunnel Construction,2017,37(5):643-644.
    [2]赵勇,田四明.中国铁路隧道数据统计[J].隧道建设,2017,37(5):641-642.ZHAO Yong,TIAN Siming. Data statistics of railway tunnel in China[J].Tunnel Construction,2017,37(5):641-642.
    [3]林春金.运营隧道衬砌渗漏水机理及注浆治理研究[D].济南:山东大学,2017.LIN Chunjin. Studies on Lining Water Laking Mechanism and Grouting Governing in Operational Tunnels[D]. Ji'nan:Shandong University,2017.
    [4]邹育麟,何川,何聪,等.重庆岩溶地区季节性富水营运隧道渗漏水病害特征及其成因机制分析[J].现代隧道技术,2014,51(4):18-27+45.ZOU Yulin,HE Chuan,HE Cong,et al. Analysis of water seepage characteristics and formation mechanisms in seasonal water-rich tunnels in a karst area of Chongqing[J].Modern Tunnelling Technology,2014,51(4):18-27+45.
    [5]傅家鲲.高速公路隧道渗漏水成因及对衬砌结构的影响研究[D].成都:西南交通大学,2012.FU Jiakun. Study on the Causes of Water Leakage and Its Impact on Structures of Highway Tunnel[D]. Chengdu:Southwest Jiaotong University,2012.
    [6]MAIR R J. Tunnelling and geotechnics:new horizons[J].Geotechnique,2008,58(9):695-736.
    [7]WONGSARO J.Three-dimensional Finite Element Analysis of Short and Long-term Ground Response to Open-face Tunnelling in Stiff Clay[D]. London:University of Cambridge,2005.
    [8]简斌,卢铁鹰,李少巍,等.地下水浮力对地下建筑结构安全的影响[J].土木建筑与环境工程,2010,32(1):56-60.JIAN Bin,LU Tieying,LI Shaowei,et al. Effect of underground water on safety of underground structure[J]. Journal of Civil Architectural&Environmental Engineering,2010,32(1):56-60.
    [9]李鹏飞,张顶立,房倩,等.基于连续介质模型的海底隧道支护结构受力特征[J].北京交通大学学报,2009,33(4):7-12.LI Pengfei,ZHANG Dingli,FANG Qian,et al. Analysis of stress characteristics of lining structure for subsea tunnel based on continuum medium model[J]. Journal of Beijing Jiaotong University,2009,33(4):7-12.
    [10]李建波,陈健云,李静.渗流场对地铁隧道沉降与受力影响的流固耦合分析[J].防灾减灾工程学报,2008(4):441-446.LI Jianbo,CHEN Jianyun,LI Jing. Coupled fluid mechanical analysis of settlement and stability of subway tunnel[J]. Journal of Disaster Prevention and Mitigation Engineering,2008(4):441-446.
    [11]房倩,张顶立,黄明琦.基于连续介质模型的海底隧道渗流问题分析[J].岩石力学与工程学报,2007,26(增刊2):3776-3784.FANG Qian,ZHANG Dinglil,HUANG Mingqi. Analysis of seepage roblem induced by subsea tunnel excavation based on continuum medium model[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(Sup2):3776-3784.
    [12]姜海霞.渗流计算中排水孔模拟方法综合研究[D].南京:河海大学,2007.JIANG Haixia. Comprehensive Study on Drainage-hole Simulation in Seepage Salculation[D].Nanjing:Hohai University,2007.
    [13]朱伯芳.有限单元法原理与应用[M].北京:中国水利出版社,2009:25-31.ZHU Bofang. The Principle and Application of Finite Element Method[M]. Beijing:China Water Conservancy Press,2009:25-31.
    [14]王恩志,王洪涛,孙役.三维裂隙网络渗流数值模型研究[J].工程力学,1997,14(增刊):520-525.WANG Enzhi,WANG Hongtao,SUN Yi. Study on numerical model of three-dimensional fissure network seepage[J]. Engineering Mechanics,1997,14(Sup):520-525.
    [15]王恩志,王洪涛,王慧明.“以缝代井列”———排水孔幕模拟方法探讨[J].岩石力学与工程学报,2002,21(1):98-101.WANG Enzhi,WANG Hongtao,WANG Huiming.“Fissure to represent line of holes”———nurmerical method for simulating the drainage hole curtain in rock masses[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(1):98-101.
    [16]邓琦.水工地下厂房排水孔布置方法及防渗效果研究[D].西安:西安理工大学,2014.DENG Qi. Study on the Drainage Hole Layout Method and Seepage Control Effect of Hydraulic Underground Powerhouse[D]. Xi'an:Xi'an University of Technology,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700