夹芯复合材料耐压壳舱段仿真计算及临界环肋高度确定方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A simulation study on the section rib-ring in sandwich composite pressure shell and a calculation method for the critical height
  • 作者:朱子旭 ; 李永清 ; 朱锡 ; 朱礼宝
  • 英文作者:ZHU Zixu;LI Yongqing;ZHU Xi;ZHU Libao;College of Naval Ship and Ocean,Navy University of Technology;
  • 关键词:夹芯复合材料耐压壳 ; 环肋 ; 屈曲损伤 ; 应力损伤 ; 有限元仿真
  • 英文关键词:sandwich composite pressure shell;;rib-ring;;buckling failure;;stress failure;;finite element simulation
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:海军工程大学舰船与海洋学院;
  • 出版日期:2019-04-23
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 基金:国家部委基金资助项目(9140A14080914JB11044)
  • 语种:中文;
  • 页:HEBX201905022
  • 页数:8
  • CN:05
  • ISSN:23-1235/T
  • 分类号:161-168
摘要
本文基于Abaqus有限元仿真软件,针对夹芯复合材料耐压壳舱段有效支撑的临界环肋高度问题进行了计算分析.论文首先结合相关试验结果,对仿真计算方法进行了验证.然后建立了共3个系列15个有限元模型,对在不同腹板铺层方式、不同尺寸的T型截面舱段环肋结构支撑下的夹芯复合材料耐压壳长舱段进行了临界屈曲载荷的计算,并得到以下结论.通过设置环肋可以有效地增加夹芯复合材料耐压壳长舱段的稳定性.当环肋的支撑刚度增加到一定值时,长舱段的屈曲模态会从整体屈曲转变为被环肋边界限制在舱段范围内的的多段的单分段屈曲模态,该环肋高度称为环肋有效支撑的临界环肋高度.环肋有效支撑的临界高度可以通过屈曲载荷随腹板高度的增长趋势图中两段直线的交点位置来确定.当环肋高度大于临界环肋高度时,结构的分段屈曲载荷与环肋的属性关系不大,主要与夹芯圆柱壳自身的尺寸与材料属性有关.经计算,本文所分析的夹芯复合材料耐压壳结构其分段自身屈曲载荷可达7.0MPa.
        In this research, the Abaqus finite element simulation software was adopted to calculate and analyze the critical height of the section rib-ring in supporting the sandwich composite pressure shell. First, the simulation method was verified by comparing the simulated result with related experimental results. Then three series of T section rib structure models were established in different layer methods and different sizes to calculate their capability to support sandwich composite pressure shell long cabin section. The buckling loads of these models were carried out and the conclusions are drawn as follows. By setting rib-ring, the stability of the long section pressure shell can be effectively increased. When the rib-ring support stiffness increased to a certain value, the overall buckling mode of the long section would be limited by the connection section with the rib-ring as boundary and turn into several single section buckling modes. The certain value of the rib-ring height is called critical height, and the calculation method is given in this paper. When the rib-ring support stiffness is greater than the critical stiffness, the critical buckling load of the structure has little relation to the properties of the rib-ring, while it is related to the size and material properties of the sandwich cylindrical shell. This critical buckling load of the structure is called section buckling load, which can reach 7.0 MPa for the sandwich composite pressure shell structure analyzed in this paper.
引文
[1]徐月明, 船用柴油机SCR催化剂选型及性能评价研究[D]. 武汉理工大学, 2012XU Yueming. Study on marine engine SCR catalyst design and performance evaluation[D]. Wuhan: Wuhan University of Technology, 2012
    [2]王金, 吴梵, 张二, 等. 环肋圆柱壳肋骨侧向稳定性理论分析[J]. 船舶工程, 2015, 37(11): 10WANG Jin, WU Fan, ZHANG Er, et al. Theoretical analysis of frame tripping of ring stiffened cylindrical shell[J]. Ship Engineering, 2015, 37(11): 10
    [3]蒋鞠慧. 复合材料加筋壳稳定性研究[J]. 玻璃钢/复合材料, 2001(3): 5JIANG Juhui. Stability of composite stiffened cylindrical shells under external pressure[J]. Fiber Reinforced Plastics/Composites, 2001(3): 5
    [4]朱锡, 石勇, 梅志远. 夹芯复合材料在潜艇声隐身结构中的应用及其相关技术研究[J]. 中国舰船研究, 2007, 2(3): 34ZHU Xi, SHI Yong, MEI Zhiyuan. Laminated compound material and technologies in the development of acoustic stealth structure in submarine[J]. Chinese Journal of Ship Research, 2007, 2(3): 34
    [5]GOLMAKANI M E, EMAMI M. Buckling and large deflection behaviors of radially functionally graded ring-stiffened circular plates with various boundary conditions[J]. Applied Mathematics and Mechanics(English Edition), 2016, 37(9): 1131
    [6]王金朝, 曹贻鹏, 黄齐上, 等. 任意边界条件下环肋圆柱壳振动特性的建模与求解[J]. 固体力学学报, 2017, 38(3): 271WANG Jinzhao, CAO Yipeng, HUANG Qishang, et al. Modelling and solution on vibration characteristics of ring-stiffened cylindrical shell with arbitrary boundary conditions[J]. Chinese Journal of Solid Mechanics, 2017, 38(3): 271
    [7]白雪飞, 郭日修, 带有损伤凹陷的环肋圆柱壳应力和稳定性分析[J]. 海军工程大学学报, 2010, 22(3): 76BAI Xuefei, GUO Rixiu. Analysis of stress and stability of damaged ring-stiffened cylindrical shell[J]. Journal of Naval University of Engineering, 2010, 22(3): 76
    [8]袁建红, 朱锡, 张振华. 水下爆炸载荷作用下环肋加筋圆柱壳结构的弹塑性动力屈曲[J]. 爆炸与冲击, 2012, 32(6): 585YUAN Jianhong, ZHU Xi, ZHANG Zhenhua. Dynamic bulking of a ring-stiffened cylindrical shell subjected to underwater explosive loading[J]. Explosion and Shock Waves, 2012, 32(6): 585
    [9]吴梵, 王金, 刘勇, 等. 几何参数对环肋圆柱壳肋骨侧向稳定性的影响[J]. 中国舰船研究, 2015, 10(4): 59WU Fan, WANG Jin, LIU Yong, et al. Effects of geometric parameters on frame tripping in the ring-stiffened cylinder[J]. Chinese Journal of Ship Research, 2015, 10(4): 59
    [10]宋世伟, 张二, 吴梵. 基于Abaqus的环肋圆柱壳长舱段稳定性分析与结构优化[J]. 船海工程, 2011, 40(6): 79SONG Shiwei, ZHANG Er, WU Fan. Buckling analysis and structural optimal design for Abaqus long ring-stiffened cylindrical shells[J]. Ship & Ocean Engineering, 2011, 40(6): 79
    [11]梁来雨, 汪志强. 基于多变量分析的环肋圆柱壳结构特性研究[J]. 海洋技术学报, 2017, 36(3): 97LIANG Laiyu, WANG Zhiqiang. Study on the structural characteristics of ring-stiffened cylindrical shell using multivariate analysis[J]. Journal of Ocean Technology, 2017, 36(3): 97
    [12]王小明. 纵骨对环肋圆柱壳肋间壳板稳定性的影响[J]. 舰船科学技术, 2017, 39(4): 35WANG Xiaoming. Longitudinals influence on stability of shell between ribs for ring-stiffened cylindrical shell[J]. Ship Science and Technology, 2017, 39(4): 35
    [13]马晓龙, 吴梵, 张二. 点蚀损伤对环肋圆柱壳极限强度的影响[J]. 船海工程, 2018, 47(1): 29MA Xiaolong, WU Fan, ZHANG Er. Study on ultimate strength of ring-stiffened cylindrical shell under pitting corrosion damage[J]. Ship & Ocean Engineering, 2018, 47(1): 29
    [14]李卓禹, 朱锡, 李华东. 静压作用下夹芯复合材料圆柱壳失效模式的有限元分析[J]. 中国舰船研究, 2015, 10(3): 45LI Zhuoyu, ZHU Xi, LI Huadong. Finite element analysis of the failure mode of composite sandwich cylinders subjected to hydrostatic pressure[J]. Chinese Journal of Ship Research, 2015, 10(3): 45
    [15]熊传志, 胡必文. 基于ANSYS的复合材料耐压壳体的有限元分析[J]. 水雷战与舰船防护, 2011, 19(3): 48XIONG Chuanzhi, HU Biwen. Finite element analysis of composite overwrapped pressure vessels based on ANSYS[J]. Mine Warfare & Ship Self-Defence, 2011, 19(3): 48
    [16]程研雪, 庞永杰, 杨卓懿. 基于近似模型技术的复合材料耐压壳性能研究[J]. 船舶工程, 2015, 37(4): 74CHENG Yanxue, PANG Yongjie, YANG Zhuoyi. Research on composite material pressure hulls based on approximation[J]. Ship Engineering, 2015, 37(4): 74
    [17]李河清, 陶华, 赵景丽, 等. 复合材料机翼环肋结构件的研制[J]. 工程塑料应用, 2005, 33(4): 35LI Heqing, TAO Hua, ZHAO Jingli, et al. Studies on CFRP aerofoil rib parts[J]. Engineering Plastics Application, 2005, 33(4): 35
    [18]HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329
    [19]HASHIN Z. Fatigue failure criteria for unidirectional fiber composite[J]. Journal of Applied Mechanics, 1981, 48(4): 846

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700