基于相变传热技术的空间瞬时大热耗载荷级联散热设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cascade Heat Dissipation Design of Space Large Heat Consumption Load Based on Phase Change Heat Transfer Technology
  • 作者:李新 ; 韩新民 ; 何书通 ; 刘万发 ; 黄金印 ; 彭方汉 ; 王录 ; 孟繁孔 ; 何江
  • 英文作者:LI Xin;HAN Xinmin;HE Shutong;LIU Wanfa;HUANG Jinyin;PENG Fanghan;WANG Lu;MENG Fankong;HE Jiang;Beijing Key Laboratory of Space Thermal Control Technology,Beijing Institute of Spacecraft System Engineering;Dalian Institute of Chemical Physics,Chinese Academy of Science;
  • 关键词:空间瞬时大热耗 ; 相变 ; 一体化 ; 散热设计
  • 英文关键词:space instantaneous high heat consumption;;phase change;;integration;;heat dissipation design
  • 中文刊名:HTGC
  • 英文刊名:Spacecraft Engineering
  • 机构:北京空间飞行器总体设计部空间热控技术北京市重点实验室;中国科学院大连化学物理研究所;
  • 出版日期:2019-04-15
  • 出版单位:航天器工程
  • 年:2019
  • 期:v.28;No.135
  • 基金:国家自然科学基金(61705230)
  • 语种:中文;
  • 页:HTGC201902010
  • 页数:9
  • CN:02
  • ISSN:11-5574/V
  • 分类号:71-79
摘要
针对空间千瓦级瞬时大热耗载荷的散热问题,提出了一种"平板蒸汽腔(Vapor Chamber,VC)+相变装置(Phase Changed Material,PCM)+环路热管(Loop Heat Pipe,LHP)"的一体化通用级联散热设计方法。以被动控温为主,采用当量导热系数大于2000W/(m·K)的VC强化传热,进而通过3D打印的导热蜂窝结构PCM强化热量的储存和释放。以某瞬时热耗达3000W的空间载荷为例进行散热设计,通过热分析和热试验验证,结果表明:热源45s和60s工作时间内最大温升分别为12.5℃和19.6℃,温度控制在10~40℃的范围内;修正后的热分析模型与热试验结果对比,绝对误差为1℃左右,相对误差为4.85%。验证了设计方法的正确性,可为同类空间千瓦级瞬时大热耗载荷的热设计提供参考。
        Aiming at the heat dissipation problem of space kilowatt-level instantaneous large heat load,ageneral cascade heat dissipation method is proposed,which is the integration of"flat vapor chamber(VC)+ phase changed material(PCM)+loop heat pipe(LHP)".The system is mainly passive thermal control,VC with equivalent thermal conductivity≥2000 W/(m·K)is used to enhance heat transfer,and then PCM with 3 Dprinted thermal honeycomb structure is used to enhance heat storage and release.In this paper,the heat dissipation design of a space load with instantaneous heat consumption up to 3000 Wis carried out.Through thermal analysis and thermal test verification,the results show that the maximum temperature rise of the heat source is 12.5℃in 45 sand 19.6℃in 60 s,the temperature of which can be controlled in the range of 10~40℃.Comparing the modified thermal analysis model with the thermal test results,the absolute error is about 1℃,and the relative error is 4.85%.The correctness of the design method is verified,which can be used as a reference for thermal design of instantaneous large thermal load of the same kind of space kilowatt-level.
引文
[1]张传强,孟恒辉,耿利寅,等.星载平板有源SAR天线热设计与验证[J].航天器工程,2017,26(6):99-105Zhang Chuanqiang,Meng Henghui,Geng Liyin,et al.Thermal design and verification of spaceborne panel SAR antenna[J].Spacecraft Engineering,2017,26(6):99-105(in Chinese)
    [2]Price D C.A review of selected thermal management solutions for military electronic systems[J].IEEE Transactions on Components and Packaging Technologies,2003,26(1):26-39
    [3]刘丹,谢可迪,马秀华,等.大功率空间全固态激光器高效传导冷却技术研究[J].中国激光,2011,38(7):1-5Liu Dan,Xie Kedi,Ma Xiuhua,et al.Study of highefficiency conduction cooling technique for high power space-based all-solid-state lasers[J].Chinese Journal of Lasers,2011,38(7):1-5(in Chinese)
    [4]王磊,菅鲁京.相变材料在航天器上的应用[J].航天器环境工程,2013,30(5):522-528Wang Lei,Jian Lujing.Application of phase change materials in spacecraft[J].Spacecraft Environment Engineering,2013,30(5):522-528(in Chinese)
    [5]李延伟,杨洪波,张洪文,等.相变热控在高空光学遥感器CCD组件中的应用[J].红外与激光工程,2012,41(11):3016-3020Li Yanwei,Yang Hongbo,Zhang Hongwen,et al.Application of phase change thermal control in CCD assembly of altitude optical sensor[J].Infrared and Laser Engineering,2012,4l(11):3016-3020(in Chinese)
    [6]菅鲁京,张加迅,赵欣,等.相变装置二维方腔内空穴分布规律研究[J].中国空间科学技术,2014,5:64-70Jian Lujing,Zhang Jiaxun,Zhao Xin,et al.Study on void distribution rule in two-dimensional quadrate cavity of PCM container[J].Chinese Space Science and Technology,2014,5:64-70(in Chinese)
    [7]菅鲁京,霍玉华,苗建印,等.微重力条件下固液相变过程空穴移动特性研究[J].航天器环境工程,2014,31(1):31-36Jian Lujing,Huo Yuhua,Miao Jianyin,et al.Void migration characteristics during solid-liquid phase change process under microgravity condition[J].Spacecraft Environment Engineering,2014,31(1):31-36(in Chinese)
    [8]张靖驰,盛强,任维佳,等.微重力条件下泡沫复合相变材料蓄热装置数值仿真[J].空间科学学报,2016,36(3):336-343Zhang Jingchi,Sheng Qiang,Ren Weijia,et al.Numerical simulation of thermal storage device of foam composite phase change material in microgravity[J].Chinese Journal of Space Science,2016,36(3):336-343(in Chinese)
    [9]Myers T G.Mathematical modelling of phase change at the nanoscale[J].International Communications in Heat and Mass Transfer,2016,76:59-62
    [10]Biswas D R.Thermal energy storage using sodium sulfate decahydrate and water[J].Solar Energy,1977,19(1):99-102
    [11]Vrable D L,Vrable M D.Space-based radar antenna thermal control[C]//Space Technology and Applications International Forum.Albuquerque,New Mexico,USA:STAIF,2001
    [12]Birur G,Novak K.Novel thermal control approaches for mars rovers,NASA 2006-0032392[R].Washington D.C.:NASA,2006
    [13]邵兴国,向艳超,谭沧海.嫦娥一号卫星热控设计中热管的应用及验证[J].航天器工程,2008,17(1):63-67Shao Xingguo,Xiang Yanchao,Tan Canghai.Heat pipe applications and test in Chang’E-1satellite[J].Spacecraft Engineering,2008,17(1):63-67(in Chinese)
    [14]王领华,刘欣,王海英,等.高效相变蓄热装置结构设计及试验研究[J].航天器环境工程,2017,34(6):667-671Wang Linghua,Liu Xin,Wang Haiying,et al.Structure design and experimental research of a high efficiency phase change heat storage device[J].Spacecraft Environment Engineering,2017,34(6):667-671(in Chinese)
    [15]王领华,刘欣,王海英,等.相变蓄热在飞行器热控中的应用研究[J].导航与航天运载技术,2017,357:88-92Wang Linghua,Liu Xin,Wang Haiying,et al.Study of the technique of phase change thermal storage applied in aircraft thermal control system[J].Missiles and Space Vehicles,2017,357:88-92(in Chinese)
    [16]罗怡,于子程,甲宸,等.蒸汽腔平板微热管仿真及传热性能测试[J].航空制造技术,2017,14:32-36Luo Yi,Yu Zicheng,Jia Chen,et al.Simulating and thermal performance test of micro heat pipe with steam chamber[J].Aeronautical Manufacturing Technology,2017,14:32-36(in Chinese)
    [17]Isaacs S A,Arias D A,Hamlington P E,et al.Experimental development and computational optimization of flat heat pipes for cubesat applications[C]//ASME2016International Mechanical Engineering Congress and Exposition.Phoenix:American Society of Mechanical Engineers,2016
    [18]侯增祺,胡金刚.航天器热控制技术[M].北京:中国科学技术出版社,2007:177-188Hou Zengqi,Hu Jingang.Spacecraft thermal control technology[M].Beijing:China Science and Technology Press,2007:177-188(in Chinese)
    [19]Divid G Gilmore.Spacecraft thermal control handbook[M].California:The Aerospace Corporation Press,1994:290-308
    [20]苗建印,钟奇,赵啟伟,等.航天器热控制技术[M].北京:北京理工大学出版社,2018:197-202Miao Jianyin,Zhong Qi,Zhao Qiwei,et al.Spacecraft thermal control technology[M].Beijing:Beijing Institute of Technology Press,2018:197-202(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700