一种新型可控方向的再入充气罩
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A new controllable inflatable shield for reentry
  • 作者:张庆 ; 叶正寅
  • 英文作者:Zhang Qing Ye Zhengyin(National Key Laboratory of Aerodynamic Design and Research,Northwestern Polytechnical University,710072,Xi’an,China)
  • 关键词:航天回收 ; 大气再入 ; 充气结构 ; 气动特性 ; 主动控制
  • 英文关键词:spacecraft recovery,atmospheric reentry,inflatable structure,aerodynamic characteristics,active control.
  • 中文刊名:YYLX
  • 英文刊名:Chinese Journal of Applied Mechanics
  • 机构:西北工业大学航空学院翼型叶栅空气动力学国家重点实验室;
  • 出版日期:2013-08-06 18:52
  • 出版单位:应用力学学报
  • 年:2013
  • 期:v.30;No.122
  • 语种:中文;
  • 页:YYLX201304008
  • 页数:8
  • CN:04
  • ISSN:61-1112/O3
  • 分类号:40-45+179-180
摘要
充气式再入与降落技术(IRDT——Inflatable Reentry and Descent Technology)是近年来出现的一种新型的航天回收技术。它的结构简单、回收成本低,极大地改善了返回式飞行器的气动加热环境,同时降低了飞行器表面的热流密度。本文在现有技术的基础上提出了一种可控方向的再入充气罩,研究表明将其应用于返回式飞行器的回收时,可在低密度大气层内将飞行器的速度降至较低水平(20m/s以内),从而降低了对防热材料的要求。另外,在没有附加动力装置的情况下可通过对充气罩气囊的充/放气来主动控制返回式飞行器的姿态,从而控制着陆点的方位。数值模拟结果表明该再入充气罩可为返回式飞行器提供足够的阻力和偏转力矩,从而起到减速和控制的作用。气动热分析结果表明:该再入充气罩在返回过程中的气动加热情况(最大热流密度为426kW/m2)远小于传统返回舱(最大热流密度为4826kW/m2),从而大幅度地降低了防热系统设计的复杂度。
        IRDT(Inflatable Reentry and Descent Technology),which is characterized by simple structure and low recovery cost,is a new concept for spacecraft reentry in recent years.It can improve the aerodynamic heating environment so the requirement for the shield material can be reduced greatly.By considering all of above factors,a new controllable inflatable shield for reentry is presented.On one hand,this shield can decelerate the reentry flight vehicle to a very low velocity(lower than 20m/s) in low density atmosphere,and thus alleviate the aerodynamic heating to the material of the shield immensely.On the other hand,the shield improves the accuracy of the landing point for the reentry flight vehicle because it can actively adjust the attitude of the reentry flight vehicle according to its predesigned trajectory by inflating or deflating its inflatable bags without any thrusters.Results of CFD simulation show that this kind of inflatable shield for reentry can provide adequate aerodynamic forces and moments for deceleration and attitude control.Analysis of aerodynamic heating reveals that the complexity for shield designing can be heavily reduced,because the heating rate to shield surface(peak heat flux 426kW/m 2) is lessened largely compared to traditional process of reentry without this shield(peak heat flux 4826kW/m 2).
引文
[1]Kendall R T.Advanced unmanned/manned space payload inflatable decelerator/delivery systems[C]//Proceedings of the AIAA Space Programs and Technologies Conference.Huntsville,AL:AIAA,1995.
    [2]Hughes S J,Dillman R A,Starr B R,et al.Inflatable reentry vehicle experiment(IRVE)design overview[C]//Proceedings of the18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar.Dublin,Ireland:AIAA,2005.
    [3]Moss J N,Glass C E,Hollis B R,et al.Low-density aerodynamics of the inflatable reentry vehicle experiment(IRVE)[C]//Proceedings of the44th AIAA Aerospace Sciences Meeting and Exhibit.Reno,Nevada:AIAA,2006.
    [4]Murman Scott M.Dynamic simulations of inflatable aerodynamic decelerator concepts[C]//Proceedings of the20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar.Seattle,Washington:AIAA,2009:AIAA2009-2964.
    [5]O'Keefe Stephen A,Bose David M.IRVE-II post-flight trajectoryreconstruction[C]//AIAA Atmospheric Flight Mechanics Conference.Toronto,Ontario Canada:AIAA,2010:AIAA2010-7515.
    [6]Jurewicz D,Lichodziejewski L,Hughes S,et al.Design and development of inflatable aeroshell structure for IRVE-3[C]//Proceedings of the21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar.Dublin,Ireland:AIAA,2011:AIAA2011-2522.
    [7]Litton Daniel K,Bose David M,Mc Neil Cheatwood F,et al.Inflatable re-entry vehicle experiment(IRVE)-4overview[C]//Proceedings of the21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar.Dublin,Ireland:AIAA,2010:AIAA 2011-2580.
    [8]Del Corso J A,Bruce W E,Liles K A,et al.Thermal analysis and testing of candidate materials for PAIDAE inflatable aeroshell[C]//Proceedings of the20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar.Dublin,Ireland:AIAA,2009.
    [9]Lindell M C,Hughes S J,Dixon M,et al.Structural analysis and testing of the inflatable reentry vehicle experiment(IRVE)[C]//Proceddings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures Structural Dynamics,and Meterials Conference.Newport,Rhode Island:AIAA,2006.
    [10]Marraffa L,Kassing D,Baglioni P,et al.Inflatable reentry technologies:flight demonstration and future prospects[EB/OL].[2012-07-20]http://www.esa.int/esapub/bulletin/bullet103/marraffa103.pdf.
    [11]Walther S,Thaeter J,Reimers C,et al.New space application opportunities based on the inflatable reentry&descent technology(IRDT)[C]//Proceedings of the AIAA/ICAS International Air and Space Symposium and Exposition:The Next100Year.Dayton,Ohio:AIAA,2003.
    [12]Rohrschneider R R,Braun R D.Survey of ballute technology for aerocapture[J].Journal of Spacecraft and Rockets,2007,44(1):10-23.
    [13]Marraffa L,MazouéF,Reynier P,et al.Some aerothermodynamic aspects of ESA entry probes[J].Chinese Journal of Aeronautics,2006,19(2):126-133.
    [14]Wilde D,Walther S,Pitchadze K,et al.Flight test and ISS application of the inflatable reentry and descent technology(IRDT)[J].Acta Astronautica,2002,51(1):83-88.
    [15]杨孝文.日本研制太空纸飞机能承受7倍音速230度高温[EB/OL].(2008-03-28)[2012-07-20]http://tech.sina.com.cn/d/2008-03-28/07392105970.shtml.(Yang Xiaowen.Space paper plane developed by Japan is resistant to seven times of speed of sound and230degrees high temperature[EB/OL].(2008-03-28)[2012-07-20].http://tech.sina.com.cn/d/2008-03-28/07392105970.shtml.(in Chinese))
    [16]沈祖炜.可膨胀再入防热锥的技术进展[J].航天返回与遥感,2001,22(2):1-6.(Shen Zuwei.Inflatable reentry shield of payload recovery technology[J].Spacecraft Recovery&Remote Sensing,2001,22(2):1-6.(in Chinese))
    [17]王伟志.充气展开式新型空间回收技术展望[J].航天返回与遥感,2004,25(1):1-5.(Wang Weizhi.Forecast of the new type inflatable deployment space recovery technology[J].Spacecraft Recovery&Remote Sensing,2004,25(1):1-5.(in Chinese))
    [18]曹旭.Al 2 O 3纤维在空间充气式气动阻尼结构中的应用[J].航天返回与遥感,2010,31(5):16-21.(Cao Xu.The application ofA1 2 O 3 fibers in space inflatable aerodynamic decelerator structures[J].Spacecraft Recovery&Remote Sensing,2010,31(5):16-21.(in Chinese))
    [19]沈自才.充气展开式结构在航天器中的应用[J].航天器环境工程,2008,25(4):323-329.(Shen Zicai.Applications for inflatable deployment structures in spacecraft[J].Spacecraft Environment Engineering,2008,25(4):323-329.(in Chinese))
    [20]唐伟,桂业伟,王安龄,等.充气气囊减速方案的气动设计研究[J].宇航学报,2007,28(2):265-268.(Tang Wei,Gui Yewei,Wang Anling,et al.Aerodynamic design for an inflatable reentry and descent decelerator[J].Journal of Astronautics,2007,28(2):265-268.(in Chinese))
    [21]夏刚,秦子增,张晓今.充气防热罩技术发展现状[J].导弹与航天运载技术,2002(1):19-24.(Xia Gang,Qin Zizeng,Zhang Xiaojin.Development status of inflatable thermal shield technology[J].Missiles and Space Vehicle,2002(1):19-24.(in Chinese))
    [22]夏刚,程文科,秦子增.充气式再入飞行器柔性热防护系统的发展状况[J].宇航材料工艺,2003(6):1-6.(Xia Gang,Cheng Wenke,Qin Zizeng.Development of flexible thermal protection for system inflatable reentry vehicles[J].Aerospace Materials and Technology,2003(6):1-6.(in Chinese))
    [23]夏刚,程文科,秦子增.充气式防热罩再入轨道设计[J].国防科技大学学报,2002,24(3):4-8.(Xia Gang,Cheng Wenke,Qin Zizeng.Reentry trajectory design of inflatable thermal shield[J].Journal of National University of Defense Technology,2002,24(3):4-8.(in Chinese))
    [24]夏刚,董扬彪,秦子增.空间站充气式下载系统的概念研究[J].航天返回与遥感,2005,26(1):5-23.(Xia Gang,Dong Yangbiao,Qin Zizeng.Conceptual research on the spacelab inflatable download system[J].Spacecraft Recovery&Remote Sensing,2005,26(1):5-23.(in Chinese))
    [25]苏芳,孟宪红.三种典型热防护系统发展概况[J].飞航导弹,2006(10):57-60.(Su Fang,Meng Xianhong.Development of three typical heat defense system[J].Winged Missiles Journal,2006(10):57-60.(in Chinese))
    [26]贺卫亮,才晶晶,汪龙芳,等.一次发射多次返回的充气式再入飞行器技术[J].载人航天,2011(4):37-41.(He Weiliang,Cai Jingjing,Wang longfang,et al.Inflatable reentry technologies research for single launching and multi-reentry(SLMR)space transporting system[J].Manned Spacecraft,2011(4):37-41.(in Chinese))
    [27]Anderson John D,Jr.Fundamentals of aerodynamics[M].New York:MacGraw-Hill,2005:763-767.
    [28]张志成,潘梅林,刘初平.高超声速气动热和热防护[M].北京:国防工业出版社,2003:77-78.(Zhang Zhicheng,Pan Meilin,Liu Chuping.Hypersonic aerodynamic heat and heat defense[M].Beijing:National Defense Industry Press,2003:77-78.(in Chinese))
    [29]戚发轫,朱仁璋,李颐黎.载人航天器技术[M].北京:国防工业出版社,2001:189-191.(Qi Faren,Zhu Renzhang,Li yili.Manned spacecraft technology[M].Beijing:National Defense Industry Press,2001:189-191.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700