基于航空结构件制造特征的CAPP系统的检索算法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Retrieval Algorithm of CAPP System Based on Manufacturing Feature of Aeronautical Structural Parts
  • 作者:王鹏 ; 王莹 ; 关煜杰 ; 喻天罡
  • 英文作者:Wang Peng;Wang Ying;Guan Yujie;Yu Tiangang;School of Mechanical Engineering,Xi'an Aeronautical University;Standardization and Research Development Center,AVIC China Aero-poly Technology Establishment;
  • 关键词:航空结构件 ; 制造特征 ; CAPP ; 编码系统 ; 检索算法 ; 特征识别
  • 英文关键词:aeronautical structural parts;;manufacturing features;;CAPP;;part classification coding system;;retrieval algorithm;;feature recognition
  • 中文刊名:HKGC
  • 英文刊名:Advances in Aeronautical Science and Engineering
  • 机构:西安航空学院机械工程学院;中国航空综合技术研究所标准化与研究发展中心;
  • 出版日期:2018-02-28
  • 出版单位:航空工程进展
  • 年:2018
  • 期:v.9;No.33
  • 基金:中国航空综合技术研究所和西安航空学院联合资助项目(20152J1076)
  • 语种:中文;
  • 页:HKGC201801019
  • 页数:8
  • CN:01
  • ISSN:61-1479/V
  • 分类号:135-142
摘要
飞机结构件是机体骨架的重要组成部分,其制造工艺复杂,在CAPP系统中进行目标识别还存在较大困难。对常见的飞机结构件进行分类,从机械制造工艺的角度,归纳出六种制造特征,构建基于航空结构件制造特征的CAPP系统;在VC++6.0环境下,设计符合OPITZ标准的基于制造特征的编码系统,完成对目标零件的特征编码;设计用于目标零件与实体库零件之间进行特征识别的分步检索算法,实现目标零件与实体库零件的制造特征相似性对比。以某机型中含44个槽特征的框类零件为例,通过该算法程序进行特征自动识别,自动识别数为40个,自动识别率达到91%。结果表明:该算法可以在CAPP系统中进行识别,是正确且可行的。
        The aircraft structure is an important part of the air-frame,and its manufacturing process is complex.It is difficult to recognize the target in the computer-aided process planning(CAPP)system.According to the characteristics of structural parts,CAPP system is constructed based on manufacturing feature of air-frame parts to improve the production efficiency.Six manufacturing features are summed up according to the machining process by researching on classification of common aircraft structural parts.In the VC+ +6.0 environment,a coding system based on manufacturing feature is designed according to OPITZ standard.The step retrieval algorithm is designed for feature recognition between target parts and entity library parts.The similarity of features is achieved between the target parts and the physical library parts.Taking the frame parts with 44 slots as an example,40 manufacturing features are automatically identified by the algorithm program.The automatic recognition rate is 91%.The result shows the feasibility and correctness of the algorithm in CAPP system.
引文
[1]王伟,楚王伟,李迎光,等.面向加工过程的飞机结构件加工特征排序方法[J].机械科学与技术,2010,29(12):1638-1645.Wang Wei,Chu Wangwei,Li Yingguang,et al.Sequencing of machining features using genetic algorithm[J].Mechanical Science and Technology for Aerospace Engineering,2010,29(12):1638-1645.(in Chinese)
    [2]谢波.设计特征到加工特征的转换方法研究[D].武汉:华中科技大学,2006.Xie Bo.Research on methodologies for converting design features to machining features[D].Wuhan:Huazhong University of Science and Technology,2006.(in Chinese)
    [3]Grayer A R.The automatic production of machined components starting from a stored geometric description[J].Advances in Computer Aided Manufacturing,2010:137-150.
    [4]陈艾华.基于IGES三维模型与MCNP接口的研究[D].衡阳:南华大学,2008.Chen Aihua.Researchs based on IGES three-dimensional model and MCN interface[D].Hengyang:University of South China,2008.(in Chinese)
    [5]张金戏.面向夹具虚拟装配的零件建模技术研究[D].哈尔滨:哈尔滨工业大学,2008.Zhang Jinxi.Research on part modeling technology for supporting fixture virtual assembly[D].Harbin:Harbin Institute of Technology,2008.(in Chinese)
    [6]校江超.基于图同构的机械CAD模型特征识别算法[J].西安工业大学学报,2011,31(1):44-47.Xiao Jiangchao.A feature recognition algorithm for mechanical CAD model based on graph isomorphism[J].Journal of Xi’an Technological University,2011,31(1):44-47.(in Chinese)
    [7]Tavares S M O.Mechanical characterization of the friction stir welding joints of Al-Li alloys for aeronautical applications[C].International Conference on Airworthiness&Fatigue-7th ICSAELS Series Conference,2013.
    [8]房志亮.面向飞机结构件生产的协同制造执行系统研发[D].大连:大连理工大学,2015.Fang Zhejiang.Development of collaborative MBS application in the production of aircraft structures[D].Dalian:Dalian university of technology,2015.(in Chinese)
    [9]高鑫,龚清洪,孙超.飞机结构件智能制造关键技术研究[J].制造技术与机床,2017(8):45-49.Gao Xin,Gong Qinghong,Sun Chao.Key technologies research of intelligent manufacturing for aircraft structural parts[J].Manufacturing Technology&Machine Tool,2017(8):45-49.(in Chinese)
    [10]帅朝林.飞机结构件数字化设计与制造技术[J].航空制造技术,2016(增刊1):48-52.Shuai Chaolin.Digital design and manufacturing technology for aircraft structural parts[J].Aeronautical Manufacturing Technology,2016(S1):48-52.(in Chinese)
    [11]成武冬,张慧东,郭晓炜,等.面向制造单元的成组工艺设计研究[J].机械设计与制造,2013(6):47-50.Cheng Wudong,Zhang Huidong,Guo Xiaowei,et al.Group process design study of manufacturing Unit[J].Machinery Design&Manufacture,2013(6):47-50.(in Chinese)
    [12]蔡松.基于特征的飞机钣金零件检验过程规划[J].成组技术与生产现代化,2013,30(3):30-35.Cai Song.Aircraft sheet metal parts inspection process planning based on feature[J].Group Technology&Production Modernization,2013,30(3):30-35.(in Chinese)
    [13]缪盛,郝博,冯月一,等.基于MBD的飞机钣金件参数化建模技术[J].成组技术与生产现代化,2014,31(4):1-6.Miao Sheng,Hao Bo,Feng Yueyi,et al.Parametric modeling technology of aircraft sheet metal based on MBD[J].Group Technology&Production Modernization,2014,31(4):1-6.(in Chinese)
    [14]杨笋.基于成组技术的零件分类与编码[J].精密制造与自动化,2014(1):4-5.Yang Sun.Classification and coding of parts based on group technology[J].Precise Manufacturing&Automation,2014(1):4-5.(in Chinese)
    [15]袁维.成组技术在零件分类编码中的应用[J].装备制造技术,2013(6):274-276.Yuan Wei.Applications of group technology in parts classification and coding[J].Equipment Manufacturing Technology,2013(6):274-276.(in Chinese)
    [16]顾立志,唐伟.面向加工的新型柔性零件编码系统的研究[J].机械工程师,2008(12):69-72.Gu Lizhi,Tang Wei.Research of the new coding system based on processing soft parts[J].Journal of Mechanical Engineer,2008(12):69-72.(in Chinese)
    [17]张培忠.柔性制造系统[M].北京:机械工业出版社,1998.Zhang Peizhong.Flexible manufacturing system[M].Beijing:China Machine Press,1998.(in Chinese)
    [18]Gao S,Shah J J.Automatic recognition of interacting machining features based on minimal condition subgraph[J].Computer-Aided Design,1998,30(9):727-739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700