主振荡功率放大中的激光晶体热分布的理论研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation of the Thermal Distribution of the Laser Crystal in the Master-oscillator Power Amplifier
  • 作者:徐敏志 ; 张婷 ; 郭永瑞 ; 彭威娜 ; 卢华东
  • 英文作者:XU Min-zhi;ZHANG Ting;GUO Yong-rui;PENG Wei-na;LU Hua-dong;State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Opto-Electronics,Shanxi University;Collaborative Innovation Center of Extreme Optics,Shanxi University;
  • 关键词:主振荡功率放大 ; 单频 ; 全固态激光 ; 热分布
  • 英文关键词:master-oscillator power amplifier;;single-frequency;;all-solid-state laser;;thermal distribution
  • 中文刊名:LZGX
  • 英文刊名:Journal of Quantum Optics
  • 机构:山西大学光电研究所量子光学与光量子器件国家重点实验室;山西大学极端光学协同创新中心;
  • 出版日期:2019-03-08 11:35
  • 出版单位:量子光学学报
  • 年:2019
  • 期:v.25;No.95
  • 基金:科技部重大科学研究计划(2017YFB0405203)
  • 语种:中文;
  • 页:LZGX201902015
  • 页数:7
  • CN:02
  • ISSN:14-1187/O4
  • 分类号:111-117
摘要
本文通过热传导方程建立了激光晶体在进行主振荡功率放大时的内部温度空间分布模型。在此基础上,比较了单端泵浦与双端泵浦行波放大装置激光晶体热分布的情况,得出了双端泵浦较单端泵浦在热效应上具有一定优势的结论。并且,我们对双端泵浦行波放大装置中的各项参数进行了优化,在分析了双端泵浦主振荡功率放大的激光晶体及泵浦源参数对热分布影响的基础上,设计了掺杂原子数百分比浓度为0.2%,长度19 mm的激光晶体及腰斑为650μm的泵浦源,获得了一个激光晶体内热分布较为均匀的双端泵浦行波放大装置。
        In this paper,a spatial temperature distribution model of laser crystal was established by means of heat conduction equation in case of the master-oscillator power amplifier(MOPA) configuration.On this basis,the thermal distribution of laser crystals in single-end-pumped and double-end-pumped amplifiers were numerically compared,concluding that the spatial temperature distribution at the laser crystal of double-end-pumped MOPA configuration was superior as compared to that of the single-end-pumped MOPA configuration.Furthermore,based on analyzing the influence of the parameters of the laser crystal and the beam waist radius of the pump source on the thermal distribution of the laser crystal,we employed a laser crystal with doped concentration of 0.2% and length of 19 mm as well as a pump source with waist radius of 650 μm,constructed the double-end-pumped MOPA with uniform thermal distribution.
引文
[1] Shi S P,Wang Y J,Yang W H,et al.Detection and Perfect Fitting of 13.2 dB Squeezed Vacuum States by Considering Green-light-induced Infrared Absorption[J].Opt Lett,2018,43(21):5411-5414.DOI:10.1364/OL.43.005411.
    [2] Barry J F,McCarron D J,Norrgard E B,et al.Magneto-optical Trapping of a Diatomic Molecule[J].Nature,2014,512(7514):286-289.DOI:10.1038/nature13634.
    [3] Winkelmann L,Puncken O,Kluzik R,et al.Injection-locked Single-frequency Laser with an Output Power of 220 W[J].Appl Phys B,2011,102(3):529-538.DOI:10.1007/s00340-011-4411-9.
    [4] Abbott B P,et al.(LIGO Scientific Collaboration and Virgo Collaboration).Observation of Gravitational Waves from a Binary Black Neutron Star Inspiral[J].Phys Rev Lett,2017,119(16):161101.DOI:10.1103/PhysRevLett.119.161101.
    [5] Assaf O,Ben-Aryeh Y.Reduction of Quantum Noise in the Michelson Interferometer by Use of Squeezed Vacuum States[J].J Opt Soc Am B,2002,19(11):2716-2721.DOI:10.1364/JOSAB.19.002716.
    [6] Basu C.High Power Solid State Single Frequency MOPA for Gravitational Wave Detection[D].Hannover:Gottfried William Leibnitz university Hanover,2012.
    [7] Carlson N W.Monolithic Diode-Laser Arrays[M].Berlin:Springer Berlin Heidelberg,1994.DOI:10.1007/978-3-642-78942-7.
    [8] Winkelmann L.Injection-locked High Power Oscillator for Advanced Gravitational Wave Observatories[D].Hanover:Gottfried William Leibnitz university Hanover,2012.
    [9] Liem A,Limpert J,Zellmer H,Tünnermann A.100-W Single-frequency Master-oscillator Fiber Power Amplifier[J].Opt Lett,2003,28(17):1537-1539.DOI:10.1364/OL.28.001537.
    [10] Tench R E,Romano C,Delavaux J M.Broadband 2-W Output Power Tandem Thulium-doped Single Clad Fiber Amplifier at 2 μm[J].IEEE Photonics Tech L,2018,30(5):503-506.DOI:10.1109/LPT.2018.2801840.
    [11] Maleki A,Tehrani M K,Saghafifar H,et al.A Compact Diode-pumped Pulsed Nd∶YAG Slab Laser based on a Master Oscillator Power Amplifier Configuration[J].Laser Phys,2016,26(2):025003.DOI:10.1088/1054-660X/26/2/025003.
    [12] Buenting U,Sayinc H,Wandt D,et al.Regenerative Thin Disk Amplifier with Combined Gain Spectra Producing 500 μJ sub 200 fs Pulses[J].Opt Express,2009,17(10):8046-8050.DOI:10.1364/OE.17.008046.
    [13] Xu Y T,Xu J L,Guo Y D,et al.Compact High-efficiency 100-W-level Diode-side-pumped Nd∶YAG Laser with Linearly Polarized TEM00 Mode Output[J].Appl Opt,2010,49(24):4576-4580.DOI:10.1364/AO.49.004576.
    [14] 王雅君.激光晶体热效应的改善及全固态高功率单频激光器的实验研究[D].太原:山西大学,2014.
    [15] Ogilvy H,Withford M J,Dekker P,et al.Efficient Diode Double-end-pumped Nd∶YVO4laser Operating at 1 342 nm[J].Opt Express,2011,11(19):2411-2415.DOI:10.1364/OE.11.002411.
    [16] 吕百达.固体激光器件[M].北京:北京邮电大学出版社,2002.
    [17] Koechner W.Solid-state Laser Engineering[M].Berlin:Springer Verlag,2005.DOI:10.1007/0-387-29338-8.
    [18] Fan T Y.Heat Generation in Nd∶YAG and Yb∶YAG[J].IEEE J Quantum Electron,1993,29(6):1457-1459.DOI:10.1109/3.234394.
    [19] Kimura T,Otsuka K.Thermal Effects of a Continuously Pumped Nd3+∶YAG Laser[J].IEEE J Quantum Electron,1971,7(8):403-407.DOI:10.1109/JQE.1971.1076822.
    [20] Baehr H D,Stephan K.Heat and Mass Transfer[M].Berlin:Springer,1995.DOI:10.1007/978-3-662-03659-4.
    [21] Shi P,Chen W,Li L,Gan A.Semianalytical Thermal Analysis on a Nd∶YVO4 Crystal[J].Appl Opt,2007,46(19):4046-4051.DOI:10.1364/AO.46.004046.
    [22] Huang Y J,Zhuang W Z,Su K W,et al.Power Scaling in a Diode-end-pumped Multisegmented Nd∶YVO4 Laser with Double-pass Power Amplification[J].IEEE J Sel Top Quantum Electron,2015,21(1):226-231.DOI:10.1109/JSTQE.2014.2336541.
    [23] Xiong Z,Li Z G,Moore N,et al.Detailed Investigation of Thermal Effects in Longitudinally Diode-pumped Nd∶YVO4 Lasers[J].Appl Opt,2003,39(8):979-986.DOI:10.1109/JQE.2003.814371.
    [24] Elani P,Morshedi S.The Double-end-pumped Cubic Nd∶YVO4 laser:Temperature Distribution and Thermal Stress[J].Pramana-J Phy,2010,74(1):67-74.DOI:10.1007/s12043-010-0008-9.
    [25] Peng X Y,Xu L,Asundi A.Power Scaling of Diode-pumped Nd∶YVO4 Laser[J].IEEE J Quantum Electron,2002,38(9):1291-1299.DOI:10.1109/JQE.2002.802443.
    [26] Délen X,Balembois F,Georges P.Design of a High Gain Single Stage and Single Pass Nd∶YVO4 Passive Picosecond Amplifier[J].J Opt Soc Am B,2012,29(9):2339-2346.DOI:10.1364/JOSAB.29.002339.
    [27] Nie M M,Liu Q,Ji E,et al.Design of High-gain Single-stage and Single-pass Nd∶YVO4 Amplifier Pumped by Fiber-coupled Laser Diode:Simulation and Experiment[J].IEEE J Quantum Electronic,2016,52(8):5100210.DOI:10.1109/JQE.2016.2585352.
    [28] Song X L,Li B B,Guo Z,et al.Influences of Pump Beam Distribution on Thermal Lensing Spherical Aberration in an LD End-pumped Nd∶YAG Laser[J].Opt Commu,2009,282(24):4779-4783.DOI:10.1016/j.optcom.2009.09.016.
    [29] Chen Y F,Kao C F,Huang T M,et al.Influence of Thermal Effect on Output Power Optimization in Fiber-coupled Laser-diode End-pumped Lasers[J].IEEE J Sel Top Quantum Electron,1997,3(1):29-34.DOI:10.1109/2944.585810.
    [30] 郭永瑞,卢华东,苏静,等.百瓦级全固态连续单频1 064 nm激光器的研究[J].中国激光,2017(6):55-62.DOI:10.3788/cjl201744.0601007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700