长三角城市群臭氧浓度的时空分异及驱动因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatio-temporal Differentiation of Ozone Concentration and Its Driving Factors in Yangtze River Delta Urban Agglomeration
  • 作者:黄小刚 ; 邵天杰 ; 赵景波 ; 曹军骥 ; 宋永永
  • 英文作者:HUANG Xiao-gang;SHAO Tian-jie;ZHAO Jing-bo;CAO Jun-ji;SONG Yong-yong;School of Geography and Tourism, Shaanxi Normal University;College of Geographical Sciences, Shanxi Normal University;Key Laboratory of Aerosol Chemistry and Physics,Institute of Earth Environment, Chinese Academy of Sciences;
  • 关键词:臭氧浓度 ; 时空分异 ; 驱动因素 ; 地理探测器 ; 长三角城市群
  • 英文关键词:ozone concentration;;spatio-temporal differentiation;;driving factor;;geographical detector;;Yangtze River Delta urban agglomeration
  • 中文刊名:CJLY
  • 英文刊名:Resources and Environment in the Yangtze Basin
  • 机构:陕西师范大学地理科学与旅游学院;山西师范大学地理科学学院;中国科学院地球环境研究所气溶胶化学与物理重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:长江流域资源与环境
  • 年:2019
  • 期:v.28
  • 基金:中央高校基本科研业务费专项项目(GK201803055);; 中国科学院气溶胶化学与物理重点实验室项目(KLACP-2018-01);; 国家自然科学基金国际合作重大项目(41210002)
  • 语种:中文;
  • 页:CJLY201906018
  • 页数:12
  • CN:06
  • ISSN:42-1320/X
  • 分类号:184-195
摘要
运用克里金插值、空间自相关分析、冷热点分析和地理探测等定量分析方法,对长三角城市群2015~2017年O_3浓度的时空分异特征及驱动因素进行了探讨。结果表明:(1)2015~2017年长三角城市群O_3浓度呈上升趋势,O_3日最大8 h滑动平均值第90百分位数平均浓度由149μg/m~3上升到166μg/m~3,平均超标率由9.3%上升到12.1%,以O_3为首要污染物的天数占超标总天数的比例由32.3%上升到46.4%。(2)受气温和降水量年际波动的影响,各年份O_3月均浓度变化曲线形状不同。但O_3超标都主要发生在4~9月,超标天数分别占2015、2016、2017年的88.3%、98.2%和97.0%。(3)由于安徽O_3浓度快速上升,长三角城市群O_3浓度空间分布格局由东高西低演变为北高南低,且同质化增强、异质性减弱。(4)随着O_3浓度的上升,O_3浓度热点区由环太湖地区向南京都市圈扩展,冷点区在安徽有明显收缩。(5)地理探测表明,长三角城市群O_3浓度空间分异主要受经济规模、城市化和排放源等社会经济因素驱动,且均呈正向影响。自然因素中的降水量和风速呈负向影响,分别对O_3有显著的清除和扩散作用。
        This study presents the spatio-temporal differentiation of ozone concentration and its driving factors in the Yangtze River Delta urban agglomeration from 2015 to 2017 via Kriging interpolation, spatial auto-correlation, hot and cool spot analysis, and geographical detection. The results show that: 1) the concentration of ozone rises during this period with 90 th percentile of maximum daily 8-h average ozone concentration rising from 149 μg/m~3 to 166 μg/m~3, the percentage of days which exceed standard(GB 3095-2012) going up from 9.3% to 12.1%, and the proportion of days with ozone as primary pollutant to total polluted days increasing from 32.3% to 46.4%; 2) impacted by the large inter-annual fluctuations of temperature and precipitation, the curves of monthly ozone concentration differ slightly in different years; the days with over-limit ozone concentration mainly occurred from April to September, which account for 88.3%, 98.2% and 97.0% of the year 2015, 2016 and 2017, respectively; 3) due to the rapid increase of ozone concentration in Anhui province, the spatial distribution pattern of ozone concentration evolves from high in East and low in West to high in North and low in South, but the concentration is more homogenized than before; 4) with the rise of ozone concentration, the hot spots expand from Taihu Lake area to Nanjing metropolitan area, while the cool spots shrink evidently in Anhui Province; 5) the analysis of geographical detector shows that socioeconomic factors such as economic scale, urbanization and emission source have a significantly positive impact on the spatial distribution of ozone concentration, while precipitation and wind have a negative impact on the spatial distribution of ozone concentration since the precipitation scavenges ozone and wind promotes the dispersion of ozone.
引文
[1] 周亮,周成虎,杨帆,等.2000-2011年中国PM2.5时空演化特征及驱动因素解析[J].地理学报,2017,72(11):2079-2092.ZHOU L,ZHOU C H,YANG F,et al.Spatio-temporal evolution and the influencing factors of PM2.5 in China between 2000 and 2011[J].Acta Geographica Sinica,2017,72(11):2079-2092.
    [2] WANG T,XUE L,BRIMBLECOMBE P,et al.Ozone pollution in China:A review of concentrations,meteorological influences,chemical precursors,and effects[J].Science of the Total Environment,2016,575:1582-1596.
    [3] WANG Y,SONG Q,FREI M,et al.Effects of elevated ozone,carbon dioxide,and the combination of both on the grain quality of Chinese hybrid rice[J].Environmental Pollution,2014,189(12):9-17.
    [4] ADON M,GALYLACAUX C,YOBOUE V,et al.Dry deposition of nitrogen compounds (NO2,HNO3,NH3),sulfur dioxide and ozone in West and Central African ecosystems using the inferential method[J].Atmospheric Chemistry & Physics,2013,13(22):11351-11374.
    [5] FISHMAN J,CRUTZEN P J.The origin of ozone in the troposphere[J].Nature,1978,274(5674):855-858.
    [6] 陈优良,陶天慧,丁鹏.长江三角洲城市群空气质量时空分布特征[J].长江流域资源与环境,2017,26(5):42-52.CHEN Y L,TAO T H,DING P.Spatial-temporal distribution characteristics of air quality in the urban agglomeration of the Yangtze River Delta[J].Resources and Environment in the Yangtze Basin,2017,26(5):42-52.
    [7] 易睿,王亚林,张殷俊,等.长江三角洲地区城市臭氧污染特征与影响因素分析[J].环境科学学报,2015,35(8):2370-2377.YI R,WANG Y L,ZHANG Y J,et al.Pollution characteristics and influence factors of ozone in Yangtze River Delta[J].Acta Scientiae Circumstantiae,2015,35(8):2370-2377.
    [8] 赵旭辉,董昊,季冕,等.合肥市O3污染时空变化特征及影响因素分析[J].环境科学学报,2018,38(2):649-660.ZHAO X H,DONG H,CHENG L,et al.Analysis on the spatial-temporal distribution characteristics of O3 and its influencing factors in Hefei City[J].Acta Scientiae Circumstantiae,2018,38(2):649-660.
    [9] 齐冰,牛彧文,杜荣光,等.杭州市近地面大气臭氧浓度变化特征分析[J].中国环境科学,2017,37(2):443-451.QI B,NIU Y W,DU R G,et al.Characteristics of surface ozone concentration in urban site of Hangzhou[J].China Environmental Science,2017,37(2):443-451.
    [10] LI L,CHEN C,HUANG C,et al.Ozone sensitivity analysis with the MM5-CMAQ modeling system for Shanghai[J].Journal of Environmental Sciences,2011,23(7):1150-1157.
    [11] 李浩,李莉,黄成,等.2013年夏季典型光化学污染过程中长三角典型城市O3来源识别[J].环境科学,2015,36(1):1-10.LI H,LI L,HUANG C,et al.Ozone source apportionment at urban area during a typical photochemical pollution episode in the summer of 2013 in the Yangtze River Delta[J].Environmental Science,2015,36(1):1-10.
    [12] 顾莹,束炯.上海城市化对气象要素和臭氧浓度的影响[J].环境污染与防治,2010,32(5):7-13.GU Y,SHU J.The impact of urbanization on meteorological factors and ozone in Shanghai[J].Environmental Pollution & Control,2010,32(5):7-13.
    [13] 李莉,陈长虹,黄成,等.长江三角洲地区大气O3和PM10的区域污染特征模拟[J].环境科学,2008,29(1):237-245.LI L,CHEN C H,HUANG C,et al.Regional air pollution characteristics simulation of O3 and PM10 over Yangtze River Delta region[J].Environmental Science,2008,29(1):237-245.
    [14] 刘海猛,方创琳,黄解军,等.京津冀城市群大气污染的时空特征与影响因素解析[J].地理学报,2018,73(1):177-191.LIU H M,FANG C L,HUANG J J,et al.The spatial-temporal characteristics and influencing factors of air pollution in Beijing-Tianjin-Hebei urban agglomeration[J].Acta Geographica Sinica,2018,73(1):177-191.
    [15] HOSODA E.Environmental economics and policy studies[M].Springer,2016.
    [16] 王少剑,苏泳娴,赵亚博.中国城市能源消费碳排放的区域差异、空间溢出效应及影响因素[J].地理学报,2018,73(3):414-428.WANG S J,SU Y X,ZHAO Y B.Regional inequality,spatial spillover effects and influencing factors of China's city-level energy-related carbon emissions[J].Acta Geographica Sinica,2018,73(3):414-428.
    [17] 雷瑜,张小玲,唐宜西,等.北京城区PM2.5及主要污染气体“周末效应”和“假日效应”研究[J].环境科学学报,2015,35(5):1520-1528.LEI Y,ZHANG X L,TANG Y X,et al.Holiday effects on PM2.5 and other major pollutants in Beijing[J].Acta Scientiae Circumstantiae,2015,35(5):1520-1528.
    [18] 强琳,董卫民,徐衡,等.宝鸡市夏季臭氧及其前体物污染特征研究[J].环境工程,2016,34(6):101-105.QIANG L,DONG W M,XU H,et al.Study on the pollution characteristics of ozone and its precursors in Baoji[J].Environmental Engineering,2016,34(6):101-105.
    [19] 曹庭伟,吴锴,康平,等.成渝城市群臭氧污染特征及影响因素分析[J].环境科学学报,2018,38(4):1275-1284.CAO T W,WU K,KANG P,et al.Study on ozone pollution characteristics and meteorological cause of Chengdu-Chongqing urban agglomeration[J].Acta Scientiae Circumstantiae,2018,38(4):1275-1284.
    [20] 苏彬彬.华东森林及高山背景区域臭氧变化特征及影响因素[J].环境科学,2013,34(7):2519-2525.SU B B,Characteristics and impact factors of O3 concentrations in Mountain background region of East China[J].Environmental Science,2013,34(7):2519-2525.
    [21] 刘湘南,黄方,王平.GIS空间分析原理与方法[M].科学出版社,2005.LIU X N,HUANG F,WANG P.Principles and methods of GIS spatial analysis[M].Beijing:Science Press,2005.
    [22] 严志翰,任丽燕,刘永强,等.浙江省碳排放时空格局及影响因素研究[J].长江流域资源与环境,2017,26(9):136-144.YAN Z H,REN L Y,LIU Y Q,et al.Spatio-temporal patterns and influencing factors of carbon emissions in Zhejiang province[J].Resources and Environment in the Yangtze Basin,2017,26(9):136-144.
    [23] 李芳林,蒋昊.长江经济带城市环境风险评价研究[J].长江流域资源与环境,2018,27(5):939-948.LI F L,JIANG H.Study on the environmental risk assessment of the Yangtze River Economic Zone[J].Resources and Environment in the Yangtze Basin,2018,27(5):939-948.
    [24] WANG J F,LI X H,CHRISTAKOS G,et al.Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region,China[J].International Journal of Geographical Information Science,2010,24(1):107-127.
    [25] 中国气象局.2015~2017年中国气候公报[R].北京:中国气象局,2015-2017.CHINA METEOROLOGICAL ADMINISTRATION.2015-2017 China Climate Bulletin[R].Beijing:China Meteorological Administration,2015-2017.
    [26] 王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134.WANG J F,XU C D.Geodetector:Principle and prospective[J].Acta Geographica Sinica,2017,72(1):116-134.
    [27] GROSSMAN G M,KRUEGER A B.Economic growth and the environment[J].Quarterly Journal of Economics,1995,110(2):353-377.
    [28] 韩素芹,孟冬梅,佟华,等.天津城市热岛及其对污染物扩散影响的数值模拟[J].生态环境学报,2009,18(2):403-407.HAN S Q,MENG D M,TONG H,et al.Numerical simulation of the urban heat island and its influence on the diffusion of pollutants in Tianjin[J].Ecology and Environmental Sciences,2009,18(2):403-407.
    [29] CIVEROLO K,HOGREFE C,LYNN B,et al.Estimating the effects of increased urbanization on surface meteorology and ozone concentrations in the New York City metropolitan region[J].Atmospheric Environment,2007,41(9):1803-1818.
    [30] WANG Y,HOPKE P K,XIA X,et al.Source apportionment of airborne particulate matter using inorganic and organic species as tracers[J].Atmospheric Environment,2012,55(3):525-532.
    [31] 陈天增,葛艳丽,刘永春,等.我国机动车排放VOCs及其大气环境影响[J].环境科学,2018,39(2):478-492.CHEN T Z,GE Y L,LIU Y C,et al.VOCs emission from motor vehicles in China and its impact on the atmospheric environment[J].Environmental Science,2018,39(2):478-492.
    [32] AN J,ZHU B,WANG H,et al.Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing,Yangtze River Delta,China[J].Atmospheric Environment,2014,97:206-214.
    [33] 肖辉,沈志来,黄美元,等.我国西南地区地面和低层大气臭氧的观测分析[J].大气科学,1993,17(5):621-628.XIAO H,SHEN Z L,HUANG M Y,et al.Measurements and analyses of ozone concentrations at the ground surface and in the lower troposphere in Southwest China[J].Scientia Atmospherica Sinica,1993,17(5):621-628.
    [34] 刘姣姣,蒋昌潭,宋丹,等.重庆夏季近地面臭氧变化规律及影响因素分析[J].重庆大学学报,2014,37(8):91-98.LIU J J,JIANG C T,SONG D,et al.Analysis of distribution characteristics of surface ozone and its influencing factors in summer in Chongqing[J].Journal of Chongqing University,2014,37(8):91-98.
    [35] 王学远,蒋维楣,刘红年,等.南京市重点工业源对城市空气质量影响的数值模拟[J].环境科学研究,2007,20(3):33-43.WANG X Y,JIANG W M,LIU H N,et al.Numerical simulation study on the effect of major industrial sources in Nanjing on urban air quality[J].Research of Environmental Sciences,2007,20(3):33-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700