一种用于电子设备的TEG系统设计与优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and optimization of a TEG system for electronic equipment
  • 作者:耿洪杨
  • 英文作者:Geng Hongyang;School of Electronics and Control Engineering, Chang'an University;
  • 关键词:集热 ; 车辙试验 ; 路面 ; 发电 ; 电子测量
  • 英文关键词:collecting heat;;rutting test;;pavement;;power generation;;electronic measurement
  • 中文刊名:DZCL
  • 英文刊名:Electronic Measurement Technology
  • 机构:长安大学电子与控制工程学院;
  • 出版日期:2019-04-23
  • 出版单位:电子测量技术
  • 年:2019
  • 期:v.42;No.316
  • 基金:国家自然科学基金(11705014);; 西安市科技计划项目(CXY1705(3))资助
  • 语种:中文;
  • 页:DZCL201908030
  • 页数:5
  • CN:08
  • ISSN:11-2175/TN
  • 分类号:7-11
摘要
传统路面集热发电方法只考虑了温度因素,为了优化传统路面集热系统对不同功耗电子仪器的适应性要求,采用车辙试验研究集热系统在车辙仪压力下的输出效率,并结合有限元分析研究沥青路面内部的温度场分布。实验结果表明,与传统路面集热系统方法相比,在70℃~80℃车辙仪作用下车辙试件的输出效率是静态下的2.8倍,且单位面积下车辙试件在4.5 h内收集的总能量为45.46 kJ,为传统实验方法的6~7倍。可见,路面集热实验需要考虑不同交通流量与环境温度的路面,所输出能量可满足不同功耗需求的电子测量设备,可用于电子设备数据采集等领域。
        The traditional pavement surface collector power generation methods only consider the temperature factor. In order to optimize the adaptability requirements of traditional road surface heat collecting system for different power consumption electronic instruments, the rutting test is used to study the output efficiency of the heat collecting system under the pressure of the vehicle, and the temperature field distribution inside the asphalt pavement is studied by finite element analysis. The experimental results show that compared with the traditional pavement collecting system methods, the output efficiency of the rutting specimen under the action of 70~80 ℃ is 2.8 times that of static, and the total amount of rutting specimens per unit area collected within 4.5 hours. The energy is 45.46 kJ, which is 6~7 times that of the traditional experimental method. It can be seen that the road surface heat collection experiment needs to consider the road surface with different traffic flow and ambient temperature, and the output energy can meet the electronic measurement equipment with different power consumption requirements.
引文
[1] 朱冬生,吴红霞,漆小玲,等.太阳能温差发电技术的研究进展[J].电源技术,2012,36(3):431-434.
    [2] 王婵,周泽广,区煜广,等.温差发电器的研究进展[J].电测与仪表,2010,47(4):40-44.
    [3] WANG H,YANG J,LIAO H,et al.Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers[J].Construction & Building Materials,2016,122:184-190.
    [4] 曾炼成.低功耗单跳无线网络实时数据采集系统设计[J].电子测量技术,2012,35(4):120-122,127.
    [5] 王永清,王丹丹,杨红国.太阳能电池供电的汽车遥控钥匙设计及测试[J].电子测量技术,2012,35(4):11-14,18.
    [6] 胡甫才,朱顺敏,汪岸,等.沥青路面温差发电系统设计分析与试验研究[J].武汉理工大学学报(交通科学与工程版),2014(4):834-838.
    [7] JIANG W,YUAN D,XU S,et al.Energy harvesting from asphalt pavement using thermoelectric technology[J].Applied Energy,2017,205:941-950.
    [8] DATTA U,DESSOUKY S,PAPAGIANNAKIS A T.Harvesting of thermoelectric energy from asphalt pavements[J].Transportation Research Record Journal of the Transportation Research Board,2017:2628.
    [9] 杜青,张寓皓,于书海.接触压力对温差发电系统性能的影响[J].天津大学学报(自然科学与工程技术版),2014,47(1):9-14.
    [10] 延西利,张世平,李艳,等.沥青路面温度场的全厚式实测分析[J].长安大学学报(自然科学版),2016,36(1):1-7.
    [11] 张珲.沥青路面加热过程中的传热分析与试验研究[D].西安:长安大学,2017.
    [12] 程富强,洪延姬,祝超.碲化铋温差发电模块构型优化设计[J].高电压技术,2014,40(5):1599-1604.
    [13] 陈征,刘开华.基于MSP430的多用便携式测量仪的设计[J].电子测量技术,2012,35(5):36-39.
    [14] AYA.LTC3108:Step-up DC/DC Converter[J].World Products and Technologies,2010(1):36.
    [15] QI F H,WANG Y Q,XIONG C Y,et al.Research of collection and conversion device of screw pump motor heat energy based on LTC3108[J].Advanced Materials Research,2013,753-755:2553-2556.
    [16] 肖川,邱延峻,艾长发,等.行车荷载作用下沥青路面动力特性试验[J].长安大学学报(自然科学版),2016,36(2):26-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700