超盐环境下含氮碳气凝胶的制备及其在超级电容器中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of nitrogen-doped carbon aerogel under hypersaline condition and its application for supercapacitors
  • 作者:张璇 ; 杨佳兴 ; 金秋阳 ; 佟明兴 ; 周俊熹 ; 高静 ; 李国华
  • 英文作者:ZHANG Xuan;YANG Jiaxing;JIN Qiuyang;TONG Mingxing;ZHOU Junxi;GAO Jing;LI Guohua;School of Chemical Engineering, Zhejiang University of Technology;
  • 关键词:热解 ; 聚合物 ; 纳米结构 ; 碳气凝胶 ; 超盐 ; 超级电容器
  • 英文关键词:pyrolysis;;polymers;;nanostructure;;carbon aerogel;;hypersaline;;supercapacitor
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:浙江工业大学化学工程学院;
  • 出版日期:2019-07-15
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(21776256,21173193,21301154);; 浙江省自然科学基金项目(ZR2013CQ020,LQ19B010002)
  • 语种:中文;
  • 页:HGSZ201907036
  • 页数:10
  • CN:07
  • ISSN:11-1946/TQ
  • 分类号:345-354
摘要
多孔碳材料因其优异的导电性和稳定性,以及成本低廉等优点而成为当今的研究热点之一。以苯酚、甲醛和三聚氰胺为原料,利用高浓度氯化锌来提供超盐环境,经溶剂热反应后,在氮气中800℃下热解制得了含氮碳气凝胶(NCA)。扫描电子显微镜、拉曼光谱、X射线光电子能谱和氮气吸附等表征结果表明,该含氮碳气凝胶具有分级多孔蜂窝状结构,其比表面积高达729.6 m~2/g。采用三电极测试体系测试了含氮碳气凝胶的电化学性能,结果表明,在三电极体系中,以0.5 mol/L H_2SO_4作为电解液,含氮碳气凝胶在电流密度为1 A/g时比电容达到350.7 F/g;在电流密度为20 A/g时,经过10000次充放电后,含氮碳气凝胶的电容保持率仍高达97.8%。在双电极体系中,含氮碳气凝胶在800 W/kg的功率密度下,能量密度可达26.8 (W·h)/kg。上述结果表明,该含氮碳气凝胶是一种非常理想的超级电容器电极材料。
        Porous carbon materials have become one research hotspot due to their excellent electrical conductivity,superior stability and low cost. Using phenol, formaldehyde and melamine as raw materials, a high concentration of zinc chloride was used to provide a super-salt environment. After solvothermal reaction, a nitrogen-containing carbon aerogel(NCA) was obtained by pyrolysis at 800℃ in nitrogen. Scanning electron microscope(SEM), Raman and Brunauer-Emmett-Teller(BET) results demonstrate that the NCA sample has hierarchically honeycomb-like structure and its specific surface area reaches 729.6 m~2/g. The as-prepared NCA, when tested in three-electrode system as supercapacitor electrode, exhibits a high specific capacitance of 350.7 F/g at 1 A/g and outstanding cycling stability with 97.8 % of the initial capacitance retained after 10000 cycles at 20 A/g in 0.5 mol/L H_2SO_4.Moreover, symmetric supercapacitor based on the NCA electrodes could deliver an impressively high energy density of 26.8(W·h)/kg at a power density of 800 W/kg. Therefore, NCA is one promising material that can be used in supercapacitors.
引文
[1]Zhang L L,Zhao X S.Carbon-based materials as supercapacitor electrodes[J].Chemical Society Reviews,2009,38(9):2520-2531.
    [2]朱红艳,赵建国,庞明俊,等.石墨烯/δ-MnO2复合材料的制备及其超级电容器性能[J].化工学报,2017,68(12):4824-4832.Zhu H Y,Zhao J G,Pang M J,et al.Preparation of graphene/δ-MnO2composites and supercapacitor performance[J].CIESCJournal,2017,68(12):4824-4832.
    [3]周王帆,陈新,曹红亮,等.法国梧桐枯叶基活性炭的制备及其在超级电容器中的应用[J].化工学报,2017,68(7):2918-2924.Zhou W F,Chen X,Cao H L,et al.Preparation of platanus leafbased activated carbon and its application to supercapacitors[J].CIESC Journal,2017,68(7):2918-2924.
    [4]Salanne M,Rotenberg B,Naoi K,et al.Efficient storage mechanisms for building better supercapacitors[J].Nature Energy,2016,1(16):16070.
    [5]Wang J G,Liu H Z,Sun H H,et al.One-pot synthesis of nitrogendoped ordered mesoporous carbon spheres for high-rate and longcycle life supercapacitors[J].Carbon,2018,127:85-92.
    [6]Cheng P,Li T,Yu H,et al.Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors[J].Journal of Physical Chemistry C,2016,120(4):2079-2086.
    [7]Li Y Q,Samad Y A,Polychronopoulou K,et al.Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption[J].ACS Sustainable Chemistry Engineering,2014,2(6):1492-1497.
    [8]Gueon D,Moon J H.Nitrogen-doped carbon nanotube spherical particles for supercapacitor applications:emulsion-assisted compact packing and capacitance enhancement[J].ACS Applied Materials&Interfaces,2015,7(36):20083-20089.
    [9]Du Y X,Liu L B,Xiang Y,et al.Enhanced electrochemical capacitance and oil-absorbability of N-doped graphene aerogel by using amino-functionalized silica as template and doping agent[J].Journal of Power Sources,2018,379:240-248.
    [10]Macías C,Rasines G,Lavela P,et al.Mn-containing N-doped monolithic carbon aerogels with enhanced macroporosity as electrodes for capacitive deionization[J].ACS Sustainable Chemistry Engineering,2016,4(5):2487-2494.
    [11]Lee E J,Lee Y J,Kim J K,et al.Preparation and characterization of nitrogen-enriched carbon aerogel as a supercapacitor electrode material[J].Journal of Nanoscience and Nanotechnology,2016,16(10):10413-10419.
    [12]Xie M J,Dong H H,Zhang D D,et al.Simple synthesis of highly ordered mesoporous carbon by self-assembly of phenolformaldehyde and block copolymers under designed aqueous basic/acidic conditions[J].Carbon,2011,49(7):2459-2464.
    [13]Guo J,Wu D L,Wang T,et al.P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor[J].Applied Surface Science,2019,475:56-66.
    [14]Quan X P,Fu Z B,Yuan L,et al.Capacitive deionization of NaCl solutions with ambient pressure dried carbon aerogel microsphere electrodes[J].RSC Advances,2017,7(57):35875-35882.
    [15]Yu Z L,Li G C,Fechler N,et al.Polymerization under hypersaline conditions:a robust route to phenolic polymerderived carbon aerogels[J].Angewandte Chemie International Edition,2016,55(47):14623-14627.
    [16]Fechler N,Wohlgemuth S A,Philipp J,et al.Salt and sugar:direct synthesis of high surface area carbon materials at low temperatures via hydrothermal carbonization of glucose under hypersaline conditions[J].Journal of Materials Chemistry A,2013,1:9418-9421.
    [17]Zeng Y,Wang K,Yao J F,et al.Hollow carbon beads fabricated by phase inversion method for efficient oil sorption[J].Carbon,2014,69:25-31.
    [18]Yu M,Li J,Wang L.KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption[J].Chemical Engineering Journal,2017,310:300-306.
    [19]Lee W H,Moon J H.Monodispersed N-doped carbon nanospheres for supercapacitor application[J].ACS Applied Materials&Interfaces,2014,6(16):13968-13976.
    [20]Zhang J L,Chen L,Zhan G Q,et al.Self-assembly synthesis of N-doped carbon aerogels for supercapacitor and electrocatalytic oxygen reduction[J].ACS Applied Materials&Interfaces,2015,7(23):12760-12766.
    [21]Wei X J,Wan S G,Gao S Y.Self-assembly-template engineering nitrogen-doped carbon aerogels for high-rate supercapacitors[J].Nano Energy,2016,28:206-215.
    [22]Shang H,Zuo Z C,Zheng H Y,et al.N-doped graphdiyne for high-performance electrochemical electrodes[J].Nano Energy,2018,44:144-154.
    [23]Han B,Lee E J,Choi W H,et al.Three-dimensionally ordered mesoporous carbons activated by hot ammonia treatment as highperformance anode materials in lithium-ion batteries[J].New Journal of Chemistry,2015,39(8):6178-6185.
    [24]Choi W H,Choi M J,Bang J H.Nitrogen-doped carbon nanocoil array integrated on carbon nanofiber paper for supercapacitor electrodes[J].ACS Applied Materials&Interfaces,2015,7(34):19370-19381.
    [25]Gu W T,Sevilla M,Magasinski A,et al.Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors:a case study for pseudocapacitance detection[J].Energy&Environmental Science,2013,6(8):2465-2476.
    [26]Meng Q S,Qin K Q,Ma L Y,et al.N-doped porous carbon nanofibers/porous silver network hybrid for high-rate supercapacitor electrode[J].ACS Applied Materials&Interfaces,2017,9(36):30832-30839.
    [27]Chizari K,Vena A,Laurentius L,et al.The effect of temperature on the morphology and chemical surface properties of nitrogendoped carbon nanotubes[J].Carbon,2014,68:369-379.
    [28]Ma K Y,Cheng J P,Liu F,et al.Co-Fe layered double hydroxides nanosheets vertically grown on carbon fiber cloth for electrochemical capacitors[J].Journal of Alloys and Compounds,2016,679:277-284.
    [29]Zhou J,Zhang Z S,Xing W,et al.Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance[J].Electrochimica Acta,2015,153:68-75.
    [30]Zhang Y,Wen G W,Gao P,et al.High-performance supercapacitor of macroscopic graphene hydrogels by partial reduction and nitrogen doping of graphene oxide[J].Electrochimica Acta,2016,221:167-176.
    [31]Chen H,Xiong Y C,Yu T,et al.Boron and nitrogen co-doped porous carbon with a high concentration of boron and its superior capacitive behavior[J].Carbon,2017,113:266-273.
    [32]Daems N,Sheng X,Vankelecom I F J,et al.Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction[J].Journal of Materials Chemistry A,2014,2:4085-4110.
    [33]Yang J,Jo M R,Kang M,et al.Rapid and controllable synthesis of nitrogen doped reduced graphene oxide using microwave-assisted hydrothermal reaction for high power-density supercapacitors[J].Carbon,2014,73:106-113.
    [34]Dong Y H,Wang W X,Quan H Y,et al.Nitrogen-doped foamlike carbon plate consisting of carbon tubes as high-performance electrode materials for supercapacitors[J].ChemElectroChem,2016,3(5):814-821.
    [35]Du J,Liu L,Hu Z P,et al.Raw-cotton-derived N-doped carbon fiber aerogel as an efficient electrode for electrochemical capacitors[J].ACS Sustainable Chemistry Engineering,2018,6(3):4008-4015.
    [36]Sun G L,Ma L Y,Ran J B,et al.Templated synthesis and activation of highly nitrogen-doped worm-like carbon composites based on melamine-urea-formaldehyde resins for high performance supercapacitors[J].Electrochimica Acta,2016,194:168-178.
    [37]Mao N,Wang H L,Sui Y,et al.Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading[J].Nano Research,2017,10:1767-1783.
    [38]Wang G Q,Zhang J,Kuang S,et al.Nitrogen-doped hierarchical porous carbon as an efficient electrode material for supercapacitors[J].Electrochimica Acta,2015,153:273-279.
    [39]Candelaria S L,Uchaker E,Cao G.Comparison of surface and bulk nitrogen modification in highly porous carbon for enhanced supercapacitors[J].Science China Materials,2015,58(7):521-533.
    [40]Hao L,Li X L,Zhi L J.Carbonaceous electrode materials for supercapacitors[J].Advanced Materials,2013,25(28):3899-3904.
    [41]Shan D D,Yang J,Liu W,et al.Biomass-derived threedimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors[J].Journal of Materials Chemistry A,2016,4:13589-13602.
    [42]Fan X M,Yu C,Yang J,et al.Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors[J].Carbon,2014,70:130-141.
    [43]Chen H,Zhou M,Wang Z,et al.Rich nitrogen-doped ordered mesoporous phenolic resin-based carbon for supercapacitors[J].Electrochimica Acta,2014,148:187-194.
    [44]Chen H,Wang G,Chen L,et al.Three-dimensional honeycomblike porous carbon with both interconnected hierarchical porosity and nitrogen self-doping from cotton seed husk for supercapacitor electrode[J].Nanomaterials,2018,8(6):412.
    [45]Sun L,Zhou H,Li L,et al.Double soft-template synthesis of nitrogen/sulfur-codoped hierarchically porous carbon materials derived from protic ionic liquid for supercapacitor[J].ACSApplied Materials&Interfaces,2017,9(31):26088-26095.
    [46]Xia K S,Huang Z Y,Zheng L,et al.Facile and controllable synthesis of N/P co-doped graphene for high-performance supercapacitors[J].Journal of Power Sources,2017,365:380-388.
    [47]Zhao L,Fan L Z,Zhou M Q,et al.Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors[J].Advanced Materials,2010,22(45):5202-5206.
    [48]Heimb?ckel R,Kraas S,Hoffmann F,et al.Increase of porosity by combining semi-carbonization and KOH activation of formaldehyde resins to prepare high surface area carbons for supercapacitor applications[J].Applied Surface Science,2018,427:1055-1064.
    [49]Wang Z,Zhou M,Chen H,et al.Hierarchical activated mesoporous phenolic-resin-based carbons for supercapacitors[J].Chemistry-An Asian Journal,2014,9(10):2789-2797.
    [50]Wei L,Sevilla M,Fuertes A B,et al.Hydrothermal carbonization of abundant renewable natural organic chemicals for highperformance supercapacitor electrodes[J].Advanced Energy Materials,2011,1(3):356-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700