南亚热带不同造林模式碳汇林土壤碳积累与碳汇功能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Soil carbon accumulation and carbon sinks under different afforestation patterns in Chinese subtropical forests
  • 作者:徐英明 ; 虞依娜 ; 李鑫 ; 李昊 ; 何明威 ; 林森
  • 英文作者:XU Yingming;YU Yina;LI Xin;LI Hao;HE Mingwei;LIN Sen;College of Forestry and Landscape Architecture,South China Agricultural University;Wuhua County Forestry Bureau;
  • 关键词:南亚热带 ; 造林模式 ; 碳汇林 ; 土壤全碳 ; 积累
  • 英文关键词:subtropical;;afforestation pattern;;carbon sequestration forest;;soil carbon;;accumulation
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:华南农业大学林学与风景园林学院;广东省梅州市五华县林业局;
  • 出版日期:2018-09-26 14:14
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:广东省林业科技创新专项资金项目(2015KJCX028);; 国家自然科学基金青年项目(31100402)
  • 语种:中文;
  • 页:STXB201901035
  • 页数:8
  • CN:01
  • ISSN:11-2031/Q
  • 分类号:359-366
摘要
碳汇林能够固定大气二氧化碳,在缓解全球变暖中起着重要的作用,研究南亚热带地区不同造林模式碳汇林土壤碳的累积,有助于为不同造林模式的碳汇林土壤碳汇功能评价提供科学依据。采用单因素随机区组设计,对立地条件基本一致的研究区采用新造林(Ⅰ)、封山育林(Ⅱ)和补植套种(Ⅲ) 3种造林模式进行碳汇造林,从而研究不同造林模式土壤碳积累与碳汇功能。结果表明:碳汇造林5年期间,土壤全碳含量差异显著,不同造林模式0—20 cm土壤层碳含量差异显著(P<0.05),其变化幅度最大,介于(-0.861±1.893)—(3.021±1.577) g C/kg之间。经过接近5年的碳汇造林,不同造林模式0—60 cm土壤层碳储量变化量介于(-2.233±3.540)—(8.670±2.342) Mg C/hm2之间,其中新造林(Ⅰ)与补植套种(Ⅲ)土壤碳储量变化量差异极显著(P<0.01);碳汇造林5年,土壤碳储量显著增加,各造林模式土壤碳汇量由大到小依次为Ⅲ> Ⅱ> Ⅰ,封山育林(Ⅱ)和补植套种(Ⅲ)的土壤碳汇效益显著。采取新造林模式的初始5年,不利于土壤的碳积累,而采取补植套种模式既有利于土壤碳固定,也有利于土壤碳的积累。
        Carbon sink forests can fix atmospheric carbon dioxide and they play an important role in mitigating global warming. Research on the accumulation of soil carbon in carbon sink forests grown using different afforestation models in the South Asian subtropical region will contribute to our understanding of carbon sequestration by carbon sink forests. A singlefactor randomized block design was used to investigate carbon sinks and three afforestation models. These were new afforestation( Ⅰ),closed mountain afforestation( Ⅱ),and replanting( Ⅲ). Soil carbon accumulation and carbon sink function were also investigated. The results showed that the soil total carbon content was significantly different before and after the five-year study period. The soil carbon content in the 0—20 cm soil layer varied significantly among the afforestation models( P<0.05),and the largest variation range was-0.861 ± 1.893 g C/kg to 3.021 ± 1.577 g C/kg. The multiple comparisons of soil organic carbon content showed that the soil organic carbon content in the 0—20 cm layer for the afforestation model was significantly different( P < 0. 05) from the other two models. Ⅰn 2016,after nearly five years of carbon sinking and afforestation,there were significant differences in the soil organic carbon contents between the different afforestation models( P < 0.05),especially in the topsoil. The soil carbon stocks in the 0—60 cm soil layer ranged between-2.233±3.540 and 8.670 ±2.342 Mg C/hm2 for the different afforestation models and the difference in soil carbon stocks between new afforestation( Ⅰ) and replanting( Ⅲ) was extremely significant( P<0.01) after the carbon sink trees had been allowed to grow for 5 years. The soil carbon stocks also increased significantly. Between 2012 and 2016,the soil carbon sinks of the various afforestation models were ranked as follows: Ⅲ>Ⅱ>Ⅰ,and the soils after closed mountain afforestation( Ⅱ) and replanting( Ⅲ) were significantly better carbon sinks than after model Ⅰ. The afforestation model has significant effects on soil organic carbon accumulation and carbon sequestration in carbon sink forests. The main differences are caused by root decomposition,litter,and precipitation. The adoption of new afforestation models for the first five years does not improve soil organic carbon. Furthermore,accumulation and fixation do not improve organic carbon levels. Adopting a closed mountain afforestation model does improve soil organic carbon fixation,but does not increase the accumulation of organic carbon. However,the replanting model( Ⅲ) improves both soil carbon fixation and soil carbon accumulation.
引文
[1] Pope J. How can global warming be traced to CO2? Scientific American,2006,295(6):124-124.
    [2] Fang J Y,Chen A P,Peng C H,Zhao S Q,Ci L J. Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001,292(5525):2320-2322.
    [3] Caldeira K,Duffy P B. The role of the southern ocean in uptake and storage of anthropogenic carbon dioxide. Science,2000,287(5453):620-622.
    [4] Norby R J,Luo Y Q. Evaluating ecosystem responses to rising atmospheric CO2and global warming in a multi-factor world. New Phytologist,2004,162(2):281-293.
    [5]李怒云,冯晓明,陆霁.中国林业应对气候变化碳管理之路.世界林业研究,2013,26(2):1-7.
    [6]李翀,周国模,施拥军,周宇峰,张宇鹏,沈利芬,范叶青,沈振明.不同经营措施对毛竹林土壤有机碳的影响.林业科学,2015,51(4):26-35.
    [7]张小全,李怒云,武曙红.中国实施清洁发展机制造林和再造林项目的可行性和潜力.林业科学,2005,41(5):139-143.
    [8]武曙红,张小全,李俊清. CDM造林或再造林项目的基线问题.林业科学,2006,42(4):112-116.
    [9] Wang H,Liu S R,Wang J X,Shi Z M,Lu L H,Zeng J,Ming A G,Tang J X,Yu H L. Effects of tree species mixture on soil organic carbon stocks and greenhouse gas fluxes in subtropical plantations in China. Forest Ecology and Management,2013,300:4-13.
    [10]史军,刘纪远,高志强,崔林丽.造林对土壤碳储量影响的研究.生态学杂志,2005,24(4):410-416.
    [11]孙鹏鹤,宋冰,董福刚.造林对土壤碳储量影响的研究.科研,2015,(21):93-93.
    [12]陈先刚,赵晓惠,陆梅.造林再造林项目碳汇能力有效性判别.东北林业大学学报,2009,37(10):99-101.
    [13]李少柯.关于建立健全碳汇林业支持政策的思考.林业经济,2013,(7):66-68.
    [14]国家林业局应对气候变化和节能减排工作领导小组办公室.造林项目碳汇计量与监测指南.北京:中国林业出版社,2008.
    [15]李翀,周国模,施拥军,周宇峰,徐林,范叶青,沈振明,李少虹,吕玉龙.不同经营措施对毛竹林生态系统净碳汇能力的影响.林业科学,2017,53(2):1-9.
    [16]盛济川,周慧.减少砍伐和退化所致排放量(REDD+)机制国内外研究新进展.阅江学刊,2014,(1):25-32.
    [17]刘延惠,王彦辉,于澎涛,熊伟,郝佳,张晓蓓,徐丽宏.六盘山南部华北落叶松人工林土壤有机碳含量.林业科学,2012,48(12):1-9.
    [18] Paul K I,Polglase P J,Nyakuengama J G,Khanna P K. Change in soil carbon following afforestation. Forest Ecology and Management,2002,168(1/3):241-257.
    [19]刘恩,刘世荣.南亚热带米老排人工林碳贮量及其分配特征.生态学报,2012,32(16):5103-5109.
    [20]李铁华,项文化,徐国祯,喻勋林,罗中太,杨万里.封山育林对林木生长的影响及其生态效益分析.中南林学院学报,2005,25(5):28-32.
    [21]胡庭兴.低效林恢复与重建.北京:华文出版社,2002.
    [22]王晓丽,王嫒,石洪华,彭士涛,宫立鹏,覃雪波.山东省长岛县南长山岛黑松和刺槐人工林的碳储量.应用生态学报,2013,24(5):1263-1268.
    [23]刘成杰.基于典型样地的山东省森林碳储量及碳密度研究[D].泰安:山东农业大学,2014.
    [24]漆良华,范少辉,杜满义,石雷,岳祥华,毛超.湘中丘陵区毛竹纯林、毛竹-杉木混交林土壤有机碳垂直分布与季节动态.林业科学,2013,49(3):17-24.
    [25]中国土壤学会.土壤农业化学分析方法.北京:中国农业科技出版社,1999.
    [26]李开志.不同改造措施对马尾松低效林有机碳储量的影响[D].成都:四川农业大学,2012.
    [27]郑顺安,常庆瑞.黄土高原不同类型人工林对土壤肥力的影响.西北农林科技大学学报:自然科学版,2006,34(2):119-123.
    [28] Jobbagy E G,Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications,2000,10(2):423-436.
    [29]常宗强,冯起,司建华,李建林,苏永红.祁连山不同植被类型土壤碳贮量和碳通量.生态学杂志,2008,27(5):681-688.
    [30]邓坤枚,罗天祥,张林,王学云,李长会.云南松林的根系生物量及其分布规律的研究.应用生态学报,2005,(1):21-24.
    [31]王洪岩,王文杰,邱岭,苏冬雪,安静,郑广宇,祖元刚.兴安落叶松林生物量、地表枯落物量及土壤有机碳储量随林分生长的变化差异.生态学报,2012,32(3):833-843.
    [32]杨万勤,张健,胡庭兴,孙辉.森林土壤生态学.成都:四川科学技术出版社,2006.
    [33]黄宇,冯宗炜,汪思龙,冯兆忠,张红星,徐永荣.杉木、火力楠纯林及其混交林生态系统C、N贮量.生态学报,2005,25(12):3146-3154.
    [34]方晰,田大伦,项文化.速生阶段杉木人工林碳素密度、贮量和分布.林业科学,2002,38(3):14-19.
    [35]杨玉盛,郭剑芬,林鹏,何宗明,谢锦升,陈光水.格氏栲天然林与人工林枯枝落叶层碳库及养分库.生态学报,2004,24(2):359-367.
    [36]龚伟,胡庭兴,王景燕,宫渊波,冉华.川南天然常绿阔叶林人工更新后土壤碳库与肥力的变化.生态学报,2008,28(6):2536-2545.
    [37]徐嘉.南亚热带两种人工林土壤碳过程对减少降雨的响应[D].北京:中国林业科学研究院,2014.
    [38]杨永欢.五华县水土流失现状及保护对策.广东水利水电,2011,(4):69-71.
    [39] Guo J F,Yang Y S,Chen G S,Xie J S,Lin P. Soil C and N pools in Chinese fir and evergreen broadleaf forests and their changes with slash burning in mid-subtropical China. Pedosphere,2006,16(1):56-63.
    [40]马长顺,王雨朦.不同经营方式对人工林土壤化学性质的影响.森林工程,2014,30(1):30-35.
    [41]曹军,张镱锂,刘燕华.近20年海南岛森林生态系统碳储量变化.地理研究,2002,21(5):551-560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700