十八胺改性氧化石墨烯/乳聚丁苯橡胶复合材料的结构与性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structure and Properties of Octadecylamine Modified Graphene Oxide/ESBR Composite
  • 作者:苏甜 ; 谢丽丽 ; 郑龙 ; 许宗超 ; 刘力 ; 温世鹏
  • 英文作者:SU Tian;XIE Lili;ZHENG Long;XU Zongchao;LIU Li;WEN Shipeng;Beijing University of Chemical Technology;Beijing Oriental Yuhong Waterproof Technology Co.,Ltd;
  • 关键词:十八胺 ; 氧化石墨烯 ; 乳聚丁苯橡胶 ; 复合材料 ; 结构 ; 动态力学性能 ; 气密性能
  • 英文关键词:octadecylamine;;graphene oxide;;ESBR;;composite;;structure;;dynamic mechanical property;;airtight property
  • 中文刊名:XJGY
  • 英文刊名:China Rubber Industry
  • 机构:北京化工大学北京市先进弹性体工程技术研究中心;北京东方雨虹防水技术股份有限公司;
  • 出版日期:2019-02-22
  • 出版单位:橡胶工业
  • 年:2019
  • 期:v.66
  • 基金:国家重点基础研究发展计划(973计划)项目[2015CB654700(2015CB674705)];; 国家自然科学基金资助项目(51573007);; 北京市科技计划课题(Z171100002217033);; 中央高校基本科研业务费资助项目(JD1805)
  • 语种:中文;
  • 页:XJGY201902002
  • 页数:8
  • CN:02
  • ISSN:11-1812/TQ
  • 分类号:11-18
摘要
以十八胺(ODA)对氧化石墨烯(GO)进行改性,采用乳液复合法制备ODA功能化GO(ODA-GO)/乳聚丁苯橡胶(ESBR)复合材料,并对其结构和性能进行研究。结果表明:ODA-GO在ESBR中的分散性良好,少量ODA-GO在ESBR中能够形成较强的填料网络;与ESBR胶料相比,ODA-GO/ESBR复合材料在0℃时的损耗因子(tanδ)增大,60℃时的tanδ减小;随着ODA-GO用量的增大,复合材料的物理性能和气密性能提高。
        The graphene oxide(GO) was modified by octadecylamine(ODA),the octadecylamine functionalized graphene oxide(ODA-GO)/emulsion styrene-butadiene rubber(ESBR) composite was prepared by emulsion composite method,and its structure and properties were studied. The results showed that,the dispersion of ODA-GO in ESBR was good,and strong filler network could be formed with small amount of ODA-GO. Compared with ESBR compound,the loss factor of ODA-GO/ESBR composite increased at 0 ℃ and decreased at 60 ℃. As the addition level of ODA-GO increased,the physical properties and airtight property of the composite were improved.
引文
[1]Rao C N,Sood A K,Subrahmanyam K S,et al.Graphen,Das Neue Zweidimensionale Nanomaterial[J].Angewandte Chemie,2009,121(42):7890-7916.
    [2]Rao C N,Sood A K,Subrahmanyam K S,et al.Graphene:the New Two-dimensional Nanomaterial[J].Angewandte Chemie International Edition,2009,48(42):7752-7777.
    [3]Boland C S,Khan U,Backes C,et al.Sensitive,High-strain,High-rate Bodily Motion Sensors Based on Graphene-Rubber Composites[J].ACS Nano,2014,8(9):8819-8830.
    [4]Beckert F,Trenkle S,Thomann R,et al.Mechanochemical Route to Functionalized Graphene and Carbon Nanofillers for Graphene/ESBRNanocomposites[J].Macromolecular Materials and Engineering,2014,299(12):1513-1520.
    [5]Araby S,Zhang L,Kuan H C,et al.A Novel Approach to Electrically and Thermally Conductive Elastomers Using Graphene[J].Polymer,2013,54(14):3663-3670.
    [6]Yan N,Caezzuto F,Lavorgna M,et al.Borate Cross-linked Graphene Oxide-chitosan as Robust and High Gas Barrier Films[J].Nanoscale,2016,8(20):10783-10791.
    [7]Layek R K,Das A K,Park M U,et al.Layer-structured Graphene Oxide/Polyvinyl Alcohol Nanocomposites:Dramatic Enhancement of Hydrogen Gas Barrier Properties[J].Journal of Materials Chemistry A,2014,2(31):12158-12161.
    [8]郑龙,黎妍,许宗超,等.功能化石墨烯/溶聚丁苯橡胶复合材料的物理和电学性能研究[J].橡胶工业,2018,65(6):612-618.
    [9]Wu J,Huang G,Li H,et al.Enhanced Mechanical and Gas Barrier Properties of Rubber Nanocomposites with Surface Functionalized Graphene Oxide at Low Content[J].Polymer,2013,54:1930-1937.
    [10]Xu Y,Gao Q,Liang H,et al.Effects of Functional Graphene Oxide on the Properties of Phenyl Silicone Rubber Composites[J].Polymer Testing,2016,54:168-175.
    [11]张松波,周竞发,刘月星,等.氧化石墨烯对炭黑/天然橡胶复合材料耐疲劳性能的影响[J].橡胶工业,2018,65(11):1205-1209.
    [12]Wang C,Liu Z,Wang S,et al.Preparation and Properties of Octadecylamine Modified Graphene Oxide/Styrene-Butadiene Rubber Composites through an Improved Melt Compounding Method[J].Journal of Applied Polymer Science,2016,133(4):42907.
    [13]Niyogi S,Bekyarova E,Itkis M E,et al.Solution Properties of Graphite and Graphene[J].Journal of the American Chemical Society,2006,128(24):7720-7721.
    [14]Liu X,Kuang W,Guo B.Preparation of Rubber/Graphene Oxide Composites with In-situ Interfacial Design[J].Polymer,2015,56:553-562.
    [15]Lu Y,Jiang Y,Wei W,et al.Novel Blue Light Emitting Graphene Oxide Nanosheets Fabricated by Surface Functionalization[J].Journal of Materials Chemistry,2012,22(7):2929-2934.
    [16]汤银银,王娜,杨凤,等.机械共混法制备改性氧化石墨烯/天然橡胶复合材料及性能表征[J].高分子材料科学与工程,2015,31(9):167-172.
    [17]Yang Y H,Bolling L,Priolo M A,et al.Super Gas Barrier and Selectivityof Graphene Oxide-polymer Multilayer Thin Films[J].Advanced Material,2013,25(4):503-508.
    [18]Xiang C S,Cox P J,Kukovecz A,et al.Functionalized Low Defect Graphene Nanoribbons and Polyurethane Composite Film for Improved Gas Barrier and Mechanical Performances[J].ACS Nano,2013,7(11):10380-10386.
    [19]Choi K,Nam S,Lee Y,et al.Reduced Water Vapor Transmission Rate of Graphene Gas Barrier Films for Flexible Organic FieldEffect Transistors[J].ACS Nano,2015,9(6):5818-5824.
    [20]Scherillo G,Lavorgna M,Buonocore G G,et al.Tailoring Assembly of Reduced Graphene Oxide Nanosheets to Control Gas Barrier Properties of Natural Rubber Nanocomposites[J].ACS Applied Materials&Interfaces,2014,6(4):2230-2234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700