植物干旱胁迫响应机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Advance on Drought Stress Response Mechanism in Plants
  • 作者:王凯悦 ; 陈芳泉 ; 黄五星
  • 英文作者:WANG Kaiyue;CHEN Fangquan;HUANG Wuxing;College of Tobacco Science,Henan Agricultural University;
  • 关键词:干旱 ; 表型 ; 生理 ; 分子 ; 基因工程
  • 英文关键词:drought;;phenotype;;physiology;;molecule;;genetic engineering
  • 中文刊名:NKDB
  • 英文刊名:Journal of Agricultural Science and Technology
  • 机构:河南农业大学烟草学院;
  • 出版日期:2018-12-25 08:54
  • 出版单位:中国农业科技导报
  • 年:2019
  • 期:v.21;No.138
  • 基金:河南省教育厅高等学校重点科研项目(17A210020)资助
  • 语种:中文;
  • 页:NKDB201902003
  • 页数:7
  • CN:02
  • ISSN:11-3900/S
  • 分类号:25-31
摘要
干旱是限制植物生长的重要因素,会诱导植物产生渗透失衡、膜系统损伤、呼吸与光合速率降低等不良反应,不仅妨碍植物各阶段的生长代谢,还影响农作物的高质高产。在与外部环境的互作过程中,植物会产生干旱响应,如通过根系和叶片结构、代谢物质成分的改变以及抗旱基因的表达来抵御干旱胁迫。从表型水平、生理水平和分子水平阐述了植物干旱胁迫响应的研究进展。其中,植物表型水平的干旱胁迫响应主要体现在根系和叶片的结构改变,而植物生理水平的干旱胁迫响应主要体现在光合作用、渗透调节代谢、抗氧化代谢和激素物质等方面,详细阐述了植物干旱胁迫响应的分子机制及参与其中的调节基因和功能基因,对研究中存在的问题进行了讨论,展望了植物干旱胁迫响应的研究前景。
        Drought stress is one of the major limitations to plant growth and development. Drought can lead to osmotic imbalance,damage of membrane system,decrease of respiration rate and photosynthesis rate,etc. adverse reaction. It not only hinders plant growth and metabolism at different stages,but also affects crops to achieve good quality and high yield. In the interaction between plants and external environment,plants will build drought response,such as changing the structure of plant root system and leaf blades,composition of metabolites and expression of droughtresistant genes to resist drought stress. The paper reviewed the research progress in the mechanism of plant response to drought stress from phenotypic level,physiological level and molecular level. The response of drought stress in phenotypic mainly included the structure change of root system and leaf. The response of drought stress to physiological was mainly reflected in photosynthesis,osmotic regulation,antioxidant metabolism and hormone,etc..The paper elaborated in detail the molecular mechanism of plant drought stress response and regulatory and functional genes involved in drought stress,discussed the existing problems and look forward the research prospect.
引文
[1]Lee D K,Jung H,Jang G,et al..Overexpression of the Os ERF71 transcription factor alters rice root structure and drought resistance[J].Plant Physiol.,2016,172(1):575-588.
    [2]Chimungu J G,Brown K M,Lynch J P.Reduced root cortical cell file number improves drought tolerance in maize[J].Plant Physiol.,2014,166(4):1943-1955.
    [3]Tanaka N,Kato M,Tomioka R,et al..Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses[J].J.Exp.Bot.,2014,65(6):1497-1512.
    [4]Henry A,Gowda V R P,Torres R O,et al..Variation in root system architecture and drought response in rice(Oryza sativa):Phenotyping of the Oryza SNP panel in rainfed lowland fields[J].Field Crops Res.,2011,120(2):205-214.
    [5]Hughes J,Hepworth C,Dutton C,et al..Reducing stomatal density in barley improves drought tolerance without impacting on yield[J].Plant Physiol.,2017,174(2):776-787.
    [6]苏适,李瑞航,郎丹莹,等.芝麻叶腺毛显微结构及干旱条件下腺毛分泌物的变化[J].作物学报,2016,42(2):278-294.Su S,Li R H,Lang D Y,et al..Microstructure of glandular trichomes on leaf surface of sesame and changes of trichome secretions under drought condition[J].Acta Agron.Sin.,2016,42(2):278-294.
    [7]Wang J,Hao X,Liu Z.Relationship between anatomical structure of grape leaf and root and drought resistance[J].North Horticult.,2017(12):43-45.
    [8]Rueda M,Godoy O,Hawkins B A.Spatial and evolutionary parallelism between shade and drought tolerance explains the distributions of conifers in the conterminous United States[J].Global Ecol.Biogeography,2017,26(1):31-42.
    [9]Picotte J J,Rhode J M,Cruzan M B.Leaf morphological responses to variation in water availability for plants in the Piriqueta caroliniana complex[J].Plant Ecol.,2009,200:267-275.
    [10]范志霞,李绍才,孙海龙.多效唑作用下紫穗槐对干旱胁迫的生理响应及抗旱性评价[J].草业学报,2017,26(3):132-141.Fan Z X,Li S C,Sun H L.Physiological response of amorpha fruiticosa to drought stress under paclobutrazol application and an evaluation of drought resistance[J].Acta Pratacult.Sin.,2017,26(3):132-141.
    [11]Ye J,Wang S W,Deng X P.Melatonin increased maize(Zea mays L.)seedling drought tolerance by alleviating droughtinduced photosynthetic inhibition and oxidative damage[J].Acta Physiol.Plant.,2016,38(2):48-61.
    [12]Deeba F,Pandey A K,Ranjan S,et al..Physiological and proteomic responses of cotton(Gossypium herbaceum L.)to drought stress[J].Plant Physiol.Biochem.,2012,53(6):6-18.
    [13]Per T S,Khan N A,Reddy P S,et al..Approaches in modulating proline metabolism in plants for salt and drought stress tolerance:Phytohormones,mineral nutrients and transgenics[J].Plant Physiol.Biochem.,2017,115:126-140.
    [14]Gomes F P,Oliva M A,Mielke M S,et al..Osmotic adjustment,proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress[J].Sci.Horticult.,2010,126(3):379-384.
    [15]Gou W,Tian L,Ruan Z,et al..Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize(Zea mays)by three plant growth promoting rhizobacteria(PGPR)strains[J].Pakistan J.Bot.,2015,47(2):581-586.
    [16]Patel J,Ariyaratne M,Ahmed S,et al..Dual functioning of plant arginases provides a third route for putrescine synthesis[J].Plant Sci.,2017,262:62-73.
    [17]郑清岭,杨冬艳,刘建文,等.干旱胁迫对沙芥和斧形沙芥幼苗生长及抗氧化系统的影响[J].植物生理学报,2017,53(4):600-608.Zheng Q L,Yang D Y,Liu J W,et al..Effects of drought stress on growth and antioxidant system of Pugionium cornutum and P.dolabratum seedlings[J].Plant Physiol.J.,2017,53(4):600-608.
    [18]Wang W B,Kim Y H,Lee H S,et al..Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses[J].Plant Physiol.Biochem.,2009,47(7):570-577.
    [19]Zhao B Y,Hu Y F,Li J J,et al..BnaABF2,a b ZIPtranscription factor from rapeseed(Brassica napus L.),enhances drought and salt tolerance in transgenic Arabidopsis[J].Bot.Studies,2016,57(1):12-24.
    [20]Akhkha A,Boutraa T,Alhejely A.The rates of photosynthesis,chlorophyll content,dark respiration,proline and abscicic acid(ABA)in wheat(Triticum durum)under water deficit conditions[J].Int.J.Agric.Biol.,2011,13(2):215-221.
    [21]Li Z,Zhou H,Peng Y,et al..Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense,endogenous polyamines and phytohormones[J].Plant Growth Regul.,2015,76(1):71-82.
    [22]Xing X,Jiang H,Zhou Q,et al..Improved drought tolerance by early IAA-and ABA-dependent H2O2,accumulation induced byα-naphthaleneacetic acid in soybean plants[J].Plant Growth Regul.,2016,80(3):1-12.
    [23]Yu L,Chen H,Guan Q,et al..At MYB2 transcription factor can interact with the CMO promoter and regulate its downstream gene expression[J].Biotechnol.Lett.,2012,34(9):1749-1755.
    [24]Li K,Xing C,Yao Z,et al..PbrMYB21,a novel MYBprotein of Pyrus betulaefolia,functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene[J].Plant Biotechnol.J.,2017,15(9):1186-1203.
    [25]Morimoto K,Ohama N,Kidokoro S,et al..BPM-CUL3 E3ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis[J].Proc.Nat.Acad Sci.USA,2017,114(40):8528-8536.
    [26]Gu L,Zhang Y,Zhang M,et al..ZmGOLS2,a target of transcription factor Zm DREB2A,offers similar protection against abiotic stress as Zm DREB2A[J].Plant Mol.Biol.,2016,90(1-2):157-170.
    [27]He G H,Xu J Y,Wang Y X,et al..Drought-responsive WRKY transcription factor genes Ta WRKY1 and Ta WRKY33from wheat confer drought and/or heat resistance in Arabidopsis J].BMC Plant Biol.,2016,16(1):116-132.
    [28]窦玲玲,李光雷,庞朝友,等.棉花转录因子GhWRKY11的克隆及功能分析[J].农业生物技术学报,2016,24(5):625-636.Dou L L,Li G L,Pang C Y,et al..Cloning and function analysis of GhWRKY11 in cotton(Gossypium hirsutum)[J].J.Agric.Biotechnol.,2016,24(5):625-636.
    [29]Liu Z,Luan Y S,Li J B.Molecular cloning and expression analysis of SpWRKY6,gene from Solanum pimpinellifolium[J].Biol.Plant.,2016,60(2):226-234.
    [30]Zhang Q,Wang M,Hu J,et al..PtrABF of Poncirus trifoliata functions in dehydration tolerance by reducing stomatal density and maintaining reactive oxygen species homeostasis[J].J.Exp.Bot.,2015,66(19):5911-5927.
    [31]Chang Y,Nguyen B H,Xie Y,et al..Co-overexpression of the constitutively active form of OsbZIP46 and ABA-activated protein kinase SAPK6 improves drought and temperature stress resistance in rice[J].Front.Plant Sci.,2017,8:1102-1118.
    [32]Yoon S,Lee D K,Yu I J,et al..Overexpression of the Osb ZIP66 transcription factor enhances drought tolerance of rice plants[J].Plant Biotechnol.Rep.,2017,11(1):53-62.
    [33]Wang B,Du H,Zhang Z,et al..BhbZIP60 from resurrection plant boea hygrometrica is an mRNA splicing-activated endoplasmic reticulum stress regulator involved in drought tolerance[J].Front.Plant Sci.,2017,8:245-257.
    [34]Wang L,Hu Z,Zhu M,et al..The abiotic stress-responsive NAC transcription factor Sl NAC11is involved in drought and salt response in tomato(Solanum lycopersicum L.)[J].Plant Cell Tiss.Organ Culture,2017,129(1):1-14.
    [35]Guo Y,Pang C,Jia X,et al..An NAM Domain gene,GhNAC79,improves resistance to drought stress in upland cotton[J].Front.Plant Sci.,2017,8:1657-1673.
    [36]Cies'la A,Mitua F,Misztal L,et al..A role for barley calcium-dependent protein kinase CPK2a in the response to drought[J].Front.Plant Sci.,2016,7:1550-1565.
    [37]Rastgar J F,Yamchi A,Hajirezaei M,et al..Growth assessments of Nicotiana tabaccum cv.Xanthi transformed with Arabidopsis thaliana P5CS under salt stress[J].African J.Biotechnol.,2011,10(43):8539-8552.
    [38]Maheswari M,Varalaxmi Y,Yadav S K,et al..Enhanced tolerance of transgenic sorghum expressing mtl D gene to waterdeficit stress[J].Indian J.Biotechnol.,2017,16(1):63-67.
    [39]张乐新,苏蔓,马甜,等.羊草Δ1-吡咯琳-5-羧酸合成酶(Lc P5CS1)基因的克隆与分析[J].草业学报,2013,22(4):197-204.Zhang L X,Su M,Ma T,et al..Cloning and analysis of theΔ1-pyrroline-5-carboxylate synthetase(LcP5CS1)from Leymus chinensis[J].Acta Pratacult.Sin.,2013,22(4):197-204.
    [40]Campitelli B E,Des Marais D L,Juenger T E.Ecological interactions and the fitness effect of water-use efficiency:Competition and drought alter the impact of natural MPK12alleles in Arabidopsis[J].Ecol.Lett.,2016,19(4):424-434.
    [41]Yao S,Wang Y,Yang T,et al..Expression pattern and function of wheat mitogen-activated protein kinase(MPK)cascade genes under micronutrient-deprived conditions[J].Acta Physiol.Plant.,2017,39(1):40-52.
    [42]Guo X,Zhang L,Zhu J,et al..Christolea crassifolia HARDYgene enhances drought stress tolerance in transgenic tomato plants[J].Plant Cell Tiss.Organ Culture,2017,129(3):469-481.
    [43]Chen J,Zhang D,Zhang C,et al..A putative PP2C-encoding gene negatively regulates ABA signaling in Populus euphratica[J].PLoS ONE,2015,10(10):e0139466.
    [44]Chao C,Yang Y,Ding X,et al..Genome-wide analysis and expression profiling of PP2C clade dunder saline and alkali stresses in wild soybean and Arabidopsis[J].Protoplasma,2018,255(2):643-654.
    [45]Morran S,Eini O,Pyvovarenko T,et al..Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors[J].Plant Biotechnol.J.,2011,9(2):230-249.
    [46]Shin D,Moon S J,Han S,et al..Expression of StMYB1R-1,a novel potato single MYB-like domain transcription factor,increases drought tolerance[J].Plant Physiol.,2011,155(1):421-432.
    [47]Xu Q,Qin H,Shuai L,et al..Molecular characterization of St NAC2 in potato and its overexpression confers drought and salt tolerance[J].Acta Physiol.Plant.,2014,36(7):1841-1851.
    [48]Okay S,Derelli E,Unver T.Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress[J].Mol.Genet.Genom.,2014,289(5):765-781.
    [49]Ying S,Zhang D F,Fu J,et al..Cloning and characterization of a maize bZIP transcription factor,Zmb ZIP72,confers drought and salt tolerance in transgenic Arabidopsis[J].Planta,2012,235(2):253-266.
    [50]Cies'la A,Mitua F,Misztal L,et al..A role for barley calcium-dependent protein kinase CPK2a in the response to drought[J].Front.Plant Sci.,2016,7(Pt 2):1550-1565.
    [51]Shen X,Guo X,Zhao D,et al..Cloning and expression profiling of the PacSnRK2 and PacPP2C gene families during fruit development,ABA treatment,and dehydration stress in sweet cherry[J].Plant Physiol.Biochem.,2017,119:275-285.
    [52]Jalakas P,Huang Y C,Yeh Y H,et al..The role of enhanced responses to ABA1(ERA1)in Arabidopsis stomatal responses is beyond ABA signaling[J].Plant Physiol.,2017,174(2):665-671.
    [53]Li K,Yang F,Zhang G,et al..AIK1,a mitogen-activated protein kinase,modulates abscisic acid responses through the MKK5-MPK6 kinase cascade[J].Plant Physiol.,2017,173(2):1391-1408.
    [54]Su M,Li X F,Ma X Y,et al..Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and Me JA treatment[J].Plant Sci.,2011,181(6):652-659.
    [55]Zhang L,Xiao S S.Overexpression of a harpin-encoding gene hrf1 in rice enhances drought tolerance[J].J.Exp.Bot.,2011,62(12):1-10.
    [56]燕丽萍,夏阳,梁慧敏,等.转BADH基因苜蓿T1代遗传稳定性和抗盐性研究[J].草业学报,2009,18(6):65-71.Yan L P,Xia Y,Liang H M,et al..A study on salt tolerance and the genetic stability of T1 generation transgenic alfalfa with the BADH gene[J].Acta Pratacult.Sin.,2009,18(6):65-71.
    [57]Maheswari M,Varalaxmi Y,Vijayalakshmi A,et al..Metabolic engineering using mtl D gene enhances tolerance to water deficit and salinity in sorghum[J].Biol.Plant.,2010,54(4):647-652.
    [58]Zhang X,Wang L,Zhao J,et al..Maize ABP9 enhances tolerance to multiple stresses in transgenic arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species[J].Plant Mol.Biol.,2011,75(5):365-378.
    [59]Long L,Gao W,Zhu L F,et al..Gb MPK3,a mitogenactivated protein kinase from cotton,enhances drought and oxidative stress tolerance in tobacco[J].Plant Cell Tissue Organ Culture,2014,116(2):153-162.
    [60]Huang J,Sun S J,Juan H,et al..Increased tolerance of rice to cold,drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245[J].Biochem.Biophys.Res.Commun.,2009,389(3):556-561.
    [61]Chen Y S,Lo S F,Sun P K,et al..A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty[J].Plant Biotechnol.J.,2015,13(1):105-116.
    [62]Ge F W,Tao P,Zhang Y,et al..Characterization of AQP,gene expressions in Brassica napus,during seed germination and in response to abiotic stresses[J].Biol.Plant.,2014,58(2):274-282.
    [63]Priji P J,Hemaprabha G.Sugarcane specific drought responsive candidate genes belonging to ABA dependent pathway identified from basic species clones of Saccharum sp.and Erianthus sp.[J].Sugar Tech.,2015,17(2):130-137.
    [64]Rao E,Divya K,Ramana G V,et al..Biochemical and molecular mechanisms that decipher drought stress tolerance in plants[A].In:Gupta R K,Akhtar N,Vyas D.Biotechnology:An Overview[M].India New Delhi:Daya Publishing House,2015.
    [65]Oh S J,Kim Y S,Kwon C W,et al..Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions[J].Plant Physiol.,2009,150(3):1368-1379.
    [66]Bhatnagar-Mathur P,Devi M J,Vadez V,et al..Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress[J].J.Plant Physiol.,2009,166(11):1207-1217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700