尺寸对NaYbF_4纳米晶活性氧产生速率的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Size on Reactive Oxygen Species Generation Rate of NaYbF_4 Nanocrystals
  • 作者:张佳音 ; 王启宇 ; 梁红 ; 孙凯霞 ; 张治国
  • 英文作者:ZHANG Jia-yin;WANG Qi-yu;LIANG Hong;SUN Kai-xia;ZHANG Zhi-guo;School of Technology,Harbin University;School of Physics&Electronic Engineering,Harbin Normal University;Condensed Matter Science and Technology Institute,Harbin Institute of Technology;
  • 关键词:NaYbF4纳米晶 ; 尺寸 ; 活性氧 ; 光动力疗法
  • 英文关键词:NaYbF4 nanocrystal;;size;;reactive oxygen species;;photodynamic therapy
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:哈尔滨学院工学院;哈尔滨师范大学物理与电子工程学院;哈尔滨工业大学凝聚态科学与技术研究所;
  • 出版日期:2019-05-15
  • 出版单位:人工晶体学报
  • 年:2019
  • 期:v.48;No.247
  • 基金:哈尔滨市科技创新人才研究专项基金(RC2017QN017004);; 黑龙江省教育科学“十三五”规划课题(GBD1317048);; 哈尔滨学院大学生科技创新项目(HXS20171515);哈尔滨学院青年博士科研启动基金(HUDF2017107);哈尔滨学院青年博士科研启动基金(HUDF2016-002)
  • 语种:中文;
  • 页:RGJT201905017
  • 页数:6
  • CN:05
  • ISSN:11-2637/O7
  • 分类号:121-125+131
摘要
本文采用热分解法制备了NaYbF_4纳米晶,并通过控制反应时间调节纳米晶尺寸来增加其比表面积,进而提高活性氧产率。通过TEM图像对NaYbF_4纳米晶的尺寸进行表征。利用化学探针法检验NaYbF_4纳米晶分散液中活性氧的产生,并计算了活性氧产生速率。结果表明纳米晶尺寸在影响Yb~(3+)与O_2的能量传递过程中占主导因素。同时,当生长时间较短时,晶格缺陷较多,无辐射弛豫过程增加,也影响活性氧产生速率。尺寸约8 nm时,NaYbF_4纳米晶活性氧产生速率最大。
        NaYbF_4 nanocrystals were synthesized by thermal decomposition method. The size of NaYbF_4 nanocrystals was adjusted by reactive time,which can increase specific surface area and improve generation rate of reactive oxygen species( ROS). The size can be characterized by TEM image. The generation of ROS was detected by chemical probe method and generation rate of ROS was calculated. The result demonstrates that the size takes an important role on the energy transfer process from Yb~(3+) to O_2. Meanwhile,short growth time for crystal would increase the defect,resulting in large non-radiative relaxation processes and low generation rate of ROS. When the size is around 8 nm,the generation of ROS from NaYbF_4 is optimized.
引文
[1] Tang X L,Wu J,Lin B L,et al. Near-infrared light-activated red-emitting upconverting nanoplatform for T1-weighted magnetic resonance imaging and photodynamic therapy[J]. Acta Biomaterialia,2018,74:360-373.
    [2] He S,Johnson N J,Huu V A N,et al. Leveraging spectral matching between photosensitizers and upconversion nanoparticles for 808nm-activated photodynamic therapy[J]. Chem. Mater.,2018,30:3991-4000.
    [3] Ma P,Xiao H,Yu C,et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species[J]. Nano Lett.,2017,17:928-937.
    [4] Huang Y R,He S,Cao W P,et al. Biomedical nanomaterials for imaging-guided cancer therapy[J]. Nanoscale,2012,4:6135-6149.
    [5] Ye Y,Wang C,Zhang X,et al. A melanin-mediated cancer immunotherapy patch[J]. Science immunology,2017,2:eaan5692.
    [6] Li Y M,Wang R,Xu Y L,et al. Influence of Silica Surface Coating on Operated Photodynamic Therapy property of Yb3+-Tm3+:Ga(Ⅲ)-doped ZnO upconversion nanoparticles[J]. Inorg. Chem.,2018,57:8012-8018.
    [7] Hu D H,Sheng Z H,Gao G H,et al. Activatable albumin-photosensitizer nanoassemblies for triple modal imaging and thermal-modulated photodynamic therapy of cancer[J]. Biomaterials,2016,93:10-19.
    [8] Fan W P,Huang P,Chen X Y,et al. Overcoming the achilles'heel of photodynamic therapy[J]. Chem. Soc. Rev.,2016,45:6488-6519.
    [9] Sternberg E D,Dolphin D,Bruckner C. Porphyrin-based photosensitizers for use in photodynamic therapy[J]. Tetrahedron,1998,54:4151-4202.
    [10] Yang X J,Xiao Q Q,Niu C X,et al. Multifunctional core-shell upconversion nanoparticles for targeted tumor cells induced by near-infrared light[J]. J. Mater. Chem. B,2013,1:2757-2763.
    [11] Li F Y,Du Y,Liu J N,et al. Responsive assembly of upconversion nanoparticles for pH-activated and near-Infrared-triggered photodynamic therapy of deep tumors[J]. Adv. Mater.,2018,30:e1802808.
    [12] Wang X,Yin X,Lai X Y,et al. A Theoretical Study of a Series of Water-Soluble Triphenylamine Photosensitizers for Two-Photon Photodynamic Therapy[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2018,203:229-235.
    [13] Wilson B C,Patterson M S. The physics,biophysics and technology of photodynamic therapy[J]. Phys. Med. Biol.,2008,53:R61.
    [14] Zhang P,Steelant W,Kumar M,et al. Versatile photosensitizers for photodynamic therapy at infrared excitation[J]. J. Am. Chem. Soc.,2007,129:4526-4527.
    [15] Liu K,Liu X M,Zeng Q H,et al. Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells[J]. ACS Nano,2012,6:4054-4062.
    [16] Punjabi A,Wu X,Tokatli-Apollon A,et al. Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodruginduced photodynamic therapy[J]. ACS Nano,2014,8:10621-10630.
    [17] Li S W,Cui S S,Yin D Y,et al. Dual antibacterial activities of a chitosan-modified upconversion photodynamic therapy system against drugresistant bacteria in deep tissue[J]. Nanoscale,2017,9:3912-3924.
    [18] Zhang J Y,Chen S,Wang P,et al. Na YbF4nanoparticles as near infrared light excited inorganic photosensitizers for deep penetration in photodynamic therapy[J]. Nanoscale,2017,9:2706-2710.
    [19] Li Z Q,Zhang Y. An efficient and user-friendly method for the synthesis of hexagonal-phase Na YF4:Yb,Er/Tm nanocrystals with controllable shape and upconversion fluorescence[J]. Nanotechnology,2008,19:345606.
    [20] Wang Y,Liu K,Liu X M,Dohnalova K,at al. Critical shell thickness of core/shell upconversion luminescence nanoplatform for FRET application[J]. J. Phys. Chem. Lett.,2011,2:2083.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700