硫酸盐还原菌利用不同生物质碳源对酸性矿山废水的处理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Treatment acid mine drainage by sulfate reducing bacteria using different biomass carbon sources
  • 作者:狄军贞 ; 李拓达 ; 赵微
  • 英文作者:DI Junzhen;LI Tuoda;ZHAO Wei;College of Civil Engineering,Liaoning Technical University;
  • 关键词:酸性矿山废水 ; 硫酸盐还原菌 ; 玉米芯 ; 甘蔗渣 ; 花生壳
  • 英文关键词:acid mine wastewater;;sulfate-reducing bacteria;;corncob;;bagasse;;peanut shell
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:辽宁工程技术大学土木工程学院;
  • 出版日期:2019-06-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.297
  • 基金:国家自然科学基金资助项目(41672247);; 辽宁省自然科学基金资助项目(2015020619);; 辽宁省教育厅一般资助项目(LJYL031)
  • 语种:中文;
  • 页:MTXB201906032
  • 页数:8
  • CN:06
  • ISSN:11-2190/TD
  • 分类号:295-302
摘要
针对多组分酸性矿山废水(Acid Mine Drainage,AMD)污染严重,治理费用高的特点,基于硫酸盐还原菌(Sulfate-Reducing Bacteria,SRB)处理AMD具有成本低、适用性强、环境友好等诸多优点,从长期受煤矸石淋溶水污染的土壤中纯化培养一株SRB,并采用廉价易得的玉米芯、甘蔗渣和花生壳作为SRB生长碳源分别构造1号,2号,3号组动态柱,进行处理AMD的模拟实验,以探讨SRB利用生物质碳源处理AMD的有效性和规律性。各动态柱分别按照正交试验最优配比进行装填,其中,1号柱中SRB生物量和60目玉米芯按固液比分别为106. 8∶100(mg∶m L)和3. 5∶100(g∶m L)装填,2号柱中SRB生物量和100目甘蔗渣按固液比分别为71. 2∶100(mg∶m L)和4. 5∶100(g∶m L)装填,3号柱中SRB生物量和100目花生壳按固液比分别为106. 8∶100(mg∶m L)和4. 5∶100(g∶m L)装填。实验结果显示,以100目甘蔗渣为碳源的2号柱处理AMD的效果较好,对SO_4~(2-),Fe~(3+),Mn~(2+),Cr~(6+),Cr~(3+)平均去除率分别为61. 63%,99. 81%,72. 35%,96. 8%,100%,而体系出水的p H值和ORP值分别为6. 38~7. 30,-246 m V,表明SRB以甘蔗渣为碳源时的生长代谢活性优于玉米芯和花生壳,甘蔗渣可实现较持久的碳源供应。通过反应前后生物质材料的SEM和XRD分析表明,大量的Fe元素主要通过生物质材料的化学吸附方式被去除,而Mn和Cr元素主要通过与硫酸盐还原菌的代谢产物反应生成金属硫化物沉淀除去,少部分金属元素通过生物质材料的物理吸附被去除。同时,反应前生物质材料表面结构完整,反应后的生物质材料结构被破坏并附着纳米级金属硫化物沉淀。
        In terms of the serious pollution of multi-component Acid Mine Wastewater( AMD) and the high treat-ment cost,the treatment of AMD based on Sulfate-Reducing Bacteria( SRB) has many advantages such as low cost,applicability and environmental friendliness.A strain of SRB was purified and cultured for a long time from soil contaminated with coal gangue leaching water. Using cheap and easy-obtained corncob,bagasse and peanut shells as the carbon source for SRB growth,the dynamic columns 1,2 and 3 were constructed respectively and the simulation experiment of AMD was carried out.Each dynamic column was filled according to the optimal ratio of the orthogonal test. Column 1 filled with SRB biomass and 60 mesh corncob was loaded at a solid-liquid ratio of 106.8 ∶ 100( mg ∶ m L) and 3.5 ∶100( g ∶ m L).Column 2 filled with SRB biomass and 100 mesh bagasse was loaded at a solid-liquid ratio of 71.2 ∶100( mg ∶ m L) and 4.5 ∶ 100( g ∶ m L).Column 3 filled with SRB biomass and 100 mesh peanut shell was loaded at a solid-liquid ratio of 106.8 ∶ 100( mg ∶ m L) and 4.5 ∶ 100( g ∶ m L).The results showed that Column 2 with the 100 mesh bagasse as the carbon source performed better in repairing AMD.The average removal rates of SO_4~(2-),Fe~(3+),Mn~(2+),Cr6+and Cr3+were 61.63%,99.81%,72.35%,96.8%,100%,respectively.The p H and ORP values of the system effluent were 6.38-7.30 and-246 m V,respectively. Therefore,as a carbon source,the growth and metabolism activity of the bagasse was better than those of corncob and peanut shell.Bagasse could supply carbon source for a longer time.The SEM and XRD analysis of the biomass material before and after the reaction showed that the element Fe was mainly removed by chemical adsorption of the biomass material,and the elements Mn and Cr were mainly removed by precipitation of metal sulfides formed by reaction with metabolites of sulfate-reducing bacteria.A small part of the metal element was removed by the physical adsorption of biomass material.The surface structure of the biomass material before the reaction was complete,but,it was destroyed and the nano-scale metal sulfide precipitate was attached on it after the reaction.
引文
[1]蔡昌凤,罗亚楠,张亚飞,等.污泥厌氧发酵-硫酸盐还原菌耦合体系产电性能和处理酸性矿井水的研究[J].煤炭学报,2013,38(S2):453-459.CAI Changfeng,LUO Yanan,ZHANG Yafei,et al.Study on the electrical performance of sludge anaerobic fermentation-sulfate reducing bacteria coupling system and treatment of acid mine water[J].Journal of China Coal Society,2013,38(S2):453-459.
    [2]胡振琪,马保国,张明亮,等.高效硫酸盐还原菌对煤矸石硫污染的修复作用[J].煤炭学报,2009,34(3):400-404.HU Zhenqi,MA Baoguo,ZHANG Mingliang,et al. Repairing effect of high-efficiency sulfate-reducing bacteria on coal gangue sulfur pollution[J].Journal of China Coal Society,2009,34(3):400-404.
    [3]唐婕琳,何环,张文娟,等.SRB菌的分离鉴定及其对矸石山酸性废水的处理[J].煤炭学报,2014,39(11):2307-2314.TANG Jielin,HE Huan,ZHANG Wenjuan,et al.Isolation and identification of SRB bacteria and its treatment of waste water from waste rock mountain[J]. Journal of China Coal Society,2014,39(11):2307-2314.
    [4]柳凤娟,张国平,付志平,等.不同碳源中硫酸盐还原菌生长状况及对砷、锑去除效率研究[J].地球与环境,2018,46(2):179-187.LIU Fengjuan,ZHANG Guoping,FU Zhiping,et al. Growth status of sulfate reducing bacteria in different carbon sources and their removal efficiency of arsenic and antimony[J]. Earth and Environment,2018,46(2):179-187.
    [5] OVEZ B.Batch biological denitrification using Arundo donax,Glycyrrhiza glabra,and Gracilaria verrucosa as carbon source[J]. Process Biochemistry,2006,41(6):1289-1295.
    [6] CHABUKDHARA Mayuri,SINGH O P.Coal mining in northeast India:An overview of environmental issues and treatment approaches[J]. International Journal of Coal Science&Technology,2016,3(2):87-96.
    [7]邵留,徐祖信,金伟,等.农业废物反硝化固体碳源的优选[J].中国环境科学,2011,31(5):748-754.SHAO Liu,XU Zuxin,JIN Wei,et al. Optimization of denitrification solid carbon source for agricultural wastes[J]. China Environmental Science,2011,31(5):748-754.
    [8]张洪灿,王清良,胡鄂明,等.玉米芯浸提COD影响因子研究[J].安徽农业科学,2012,40(21):11011-11013.ZHANG Hongcan,WANG Qingliang,HU Eming,et al.Study on factors affecting COD extraction from corncob[J]. Anhui Agricultural Sciences,2012,40(21):11011-11013.
    [9]张雅琳,胡学伟,夏丽娟,等.甘蔗渣为缓释碳源负载SRB处理模拟矿山淋滤水[J].环境工程学报,2016,10(5):2355-2359.ZHANG Yalin,HU Xuewei,XIA Lijuan,et al.Sugarcane bagasse for slow release carbon source loading SRB treatment to simulate mine leaching water[J]. Journal of Environmental Engineering,2016,10(5):2355-2359.
    [10]赵莹.硫酸盐还原菌的分离及金属离子去除机理的研究[D].吉林:吉林大学,2016:10-21.ZHAO Ying.Separation of sulfate-reducing bacteria and mechanism of metal ion removal[D].Jilin:Jilin University,2016:10-21.
    [11]张净瑞,朱葛夫,潘小芳,等.不同碳硫比条件下底物类型对硫酸盐去除的差异性[J].环境工程技术学报,2015,5(4):253-258.ZHANG Jingrui,ZHU Gefu,PAN Xiaofang,et al. Differences in substrate removal from sulfates under different carbon-sulfur ratios[J]. Journal of Environmental Engineering Technology,2015,5(4):253-258.
    [12]谷国栋.油田采出液SRB生长特性及抑制方法研究[D].大庆:东北石油大学,2015:26-28.GU Guodong.Study on growth characteristics and inhibition methods of SRB in oilfield production[D]. Daqing:Northeast Petroleum University,2015:26-28.
    [13]孙尧,王兴润,杨延梅,等.铬渣污染土壤稳定化技术研究[J].环境工程,2012,30(S2):524-527.SUN Yao,WANG Xingrun,YANG Yanmei,et al.Study on soil stabilization technology of chromium slag contaminated soil[J]. Environmental Engineering,2012,30(S2):524-527.
    [14]徐克璋.葡萄糖、果糖还原能力的探讨[J].四川师范大学学报(自然科学版),1988(4):107-109.XU Kezhang.Discussion on the reducing ability of glucose and fructose[J].Journal of Sichuan Normal University(Natural Science),1988(4):107-109.
    [15]朱优清,刘增俊,夏旭,等.甘蔗渣修复铬污染土壤的效果[J].环境工程学报,2017,11(4):2569-2573.ZHU Youqing,LIU Zengjun,XIA Xu,et al.Effect of bagasse on the restoration of chromium-contaminated soil[J]. Journal of Environmental Engineering,2017,11(4):2569-2573.
    [16]张庆乐,张文平,党光耀,等.玉米芯对废水重金属的吸附机制及影响因素[J].污染防治技术,2008,21(5):21-22.ZHANG Qingle,ZHANG Wenping,DANG Guangyao,et al.Adsorption mechanism and influencing factors of corncob on heavy metals in wastewater[J].Pollution Control Technology,2008,21(5):21-22.
    [17] KIM S Y,KIM J H,KIM C I,et al.Metal adsorption of the polysaccharide produced from Methylobacterium organophilum[J]. Biotechnology Letters,1996,18(10):1161-1164.
    [18] ZHENG Y,FANG X L,YE Z L,et al.Biosorption of Cu(II)on extracellular polymers from Bacillus sp. F19[J]. Journal of Environmental Sciences,2008,20(11):1288-1293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700