电流密度对碳钢微弧氧化层耐液态铅铋腐蚀性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Current Density on Liquid Pb-Bi Corrosion Resistance of Carbon Steel Micro-arc Oxidation Layer
  • 作者:朱强 ; 陈文彬 ; 雷玉成 ; 赵军
  • 英文作者:ZHU Qiang;CHEN Wen-bin;LEI Yu-cheng;ZHAO Jun;Jiangsu University;
  • 关键词:熔钎焊 ; 微弧氧化 ; 陶瓷层 ; 电流密度 ; 液态Pb-Bi腐蚀
  • 英文关键词:fusion brazing;;micro-arc oxidation;;ceramic layer;;current density;;liquid Pb-Bi corrosion
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:江苏大学;
  • 出版日期:2019-02-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金青年基金项目(51505197)~~
  • 语种:中文;
  • 页:BMJS201902029
  • 页数:7
  • CN:02
  • ISSN:50-1083/TG
  • 分类号:203-209
摘要
目的提高碳钢耐液态Pb-Bi耐腐蚀性能。方法采用熔钎焊的方法,对6061铝合金和Q235钢进行搭接焊,焊后采用微弧氧化技术在焊接接头制备微弧氧化陶瓷层,将其放入350℃的高温液态Pb-Bi中进行300h静态腐蚀试验。结果选用钨极氩弧焊机,用ER4043焊丝作为钎料,通过调节焊接参数,在焊接电流为85 A、焊接速度为140 mm/min的参数下,铝层与Q235钢的结合强度达到182 MPa,金属间化合物厚度为7.3μm。在2 g/L KOH+4 g/L Na2Si O3·9H2O的电解液中进行微弧氧化试验,放电孔洞直径和数量随着电流密度的增大而增加。通过对比发现,在10A/dm2下生成的氧化膜层厚度适宜,同时致密性较好,陶瓷层由γ-Al2O3和α-Al2O3组成。经过静态腐蚀后,Q235碳钢母材试样表面被明显腐蚀,而Q235钢微弧氧化后的试样则有较好的耐腐蚀性能,其中10 A/dm2电流密度参数下制得的氧化膜层耐蚀性能最优。结论微弧氧化陶瓷膜层可显著提高材料在高温液态Pb-Bi合金中的耐腐蚀性能,且膜层致密性和厚度会影响其对材料的保护作用。
        The work aims to improve the corrosion resistance of carbon steel in liquid Pb-Bi. The 6061 aluminum alloy andQ235 steel were lap welded by fusion brazing method. After welding, micro-arc oxidation technology was used to prepare mi-cro-arc oxidation ceramic coating on the welded joint. Then the micro-arc oxidation samples were put into 350 ℃ liquid Pb-Bifor 300 h static corrosion test. The tungsten argon arc welding machine was used, and the ER4043 welding wire was selected asthe brazing material. By adjusting the welding parameters, the bonding strength of the aluminum layer and the Q235 steelreached 182 MPa and the intermetallic compound thickness was 7.3 μm under the parameters of welding current of 85 A andwelding speed of 140 mm/min. Micro-arc oxidation experiments were carried out in 2 g/L KOH and 4 g/L Na2 Si O3·9 H2 O elec-trolytes. The diameter and number of discharge holes increased with the increase of current density. By comparison, it was foundthat the thickness of the oxide coating formed at 10 A/dm2 was suitable and the compactness was good. The ceramic coating wascomposed of γ-Al2 O3 and α-Al2 O3. After static corrosion, the surface of Q235 carbon steel base material was obviously cor-roded, while Q235 steel sample after micro-arc oxidation had better corrosion resistance. The corrosion resistance of oxidecoating obtained under 10 A/dm2 current density was the best. The micro-arc oxidation ceramic coating can significantly im-prove the corrosion resistance of the material in high temperature liquid Pb-Bi alloy, and the compactness and thickness of thecoating will affect the protective effect on the material.
引文
[1]MARTINELLI L,DUFRENOY T,JAAKOU K,et al.High temperature oxidation of Fe-9Cr-1Mo steel in stagnant liquid lead-bismuth at several temperatures and for different lead contents in the liquid alloy[J].Journal of nuclear materials,2008,376:282-288.
    [2]ARTíN F J M,SOLER L,HERNáNDEZ F,et al.Oxide layer stability in lead-bismuth at high temperature[J].Journal of nuclear materials,2004,335:194-198.
    [3]МüLLER G,HEINZEL A,KONYS J,et al.Results of steel corrosion tests in flowing liquid Pb/Bi at 420~600℃after2000 h[J].Journal of nuclear materials,2002,301:40-46.
    [4]许咏丽,龙斌.ADS结构材料在液态Pb-Bi合金中的腐蚀[J].原子能科学技术,2003,37(4):325.XU Yong-li,LONG Bin.Corrosion behavior of materials in Liquid Pb-Bi eutectic[J].Atomic energy science and technology,2003,37(4):325.
    [5]薛文斌,邓志威,来永春,等.有色金属表面微弧氧化技术评述[J].金属热处理,2000(1):1-3.XUE Wen-bin,DENG Zhi-wei,LAI Yong-chun,et al.Review of microarc oxidation technique on surface of nonferrous metals[J].Heat treatment of metals,2000(1):1-3.
    [6]郭洪波,宫声凯,徐惠彬.先进航空发动机热障涂层技术研究进展[J].中国材料进展,2009,28(z2):18-26.GUO Hong-bo,GONG Sheng-kai,XU Hui-bin.Progress in thermal barrier coatings for advanced aeroengines[J].Materials China,2009,28(z2):18-26.
    [7]许志武,陈仁华,李雪涛,等.纯Al与镀锌钢板TIG熔-钎焊接头的界面结构特征[J].焊接,2010(2):18-21.XU Zhi-wu,CHEN Ren-hua,LI Xue-tao,et al.Interface structure of TIG welding-brazed joint of pure aluminum and zinc-coated steel[J].Welding,2010(2):18-21.
    [8]雷振,于宁,游爱清,等.5A02/Q235钢Nd:YAG激光-脉冲MIG复合热源熔-钎连接[J].焊接学报,2008,29(6):24-28.LEI Zhen,YU Ning,YOU Ai-qing,et al.Fusion-brazing joining between 5A02 aluminium alloy and Q235 steel by Nd:YAG laser-pulsed MIG hybrid welding[J].Transactions of the China welding institution,2008,29(6):24-28.
    [9]宋建岭.铝合金/不锈钢预涂层TIG熔-钎焊特性与界面行为研究[D].哈尔滨:哈尔滨工业大学,2010.SONG Jian-ling.Study on characteristics and interface behavior of precoating TIG welding-brazing of aluminum alloy to stainless steel[D].Harbin:Harbin Institute of Technology,2010.
    [10]PEYRE P,SIERRA G,DESCHAUX B F,et al.Generation of aluminium-steel joints with laser-induced reactive wetting[J].Materials science&engineering A,2007,444(1-2):327-338.
    [11]MURAKAMI T,NAKATA K,TONG H,et al.Dissimilar metal joining of aluminum to steel by MIG arc brazing using flux cored wire[J].Transactions of the iron&steel institute of Japan,2007,43(10):1596-1602.
    [12]夏天.镁合金微弧氧化陶瓷层的结合强度及其致密性的研究[D].西安:西安理工大学,2005.XIA Tian.Study on bonding strength and compact-ability of ceramic coatings formed by micro-arc oxidation on magnesium alloys[D].Xi'an:Xi'an University of Technology,2005.
    [13]刘晓龙,鲁亮,邹志锋,等.5083铝合金微弧氧化膜的制备及腐蚀性能[J].特种铸造及有色合金,2013,33(1):85-89.LIU Xiao-long,LU Liang,ZOU Zhi-feng,et al.Preparation and corrosion behaviors of micro-arc oxidation ceramic coating on 5083 aluminum alloy[J].Special-cast and non-ferrous alloys,2013,33(1):85-89.
    [14]苗景国.超硬铝合金7075微弧氧化陶瓷层的微结构及性能研究[D].武汉:武汉科技大学,2013.MIAO Jing-guo.Study of the microstructure and properties of ceramic coatings prepared by micro-arc oxidation on surface of 7075 super-hard aluminum alloy[D].Wuhan:Wuhan University of Science and Technology,2013.
    [15]李世杰.铝合金微弧氧化电泳复合涂层耐腐蚀性能的研究[D].天津:河北工业大学,2015.LI Shi-jie.Study on the corrosion resistance of composite coating by micro-arc oxidation and electrophoresis on aluminum alloy[D].Tianjin:Hebei University of Technology,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700