亚热带不同林龄杉木林叶-根-土氮磷化学计量特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variation in the N and P stoichiometry of leaf-root-soil during stand development in a Cunninghamia lanceolata plantation in subtropical China
  • 作者:陈安娜 ; 王光军 ; 陈婵 ; 李淑英 ; 李维佳
  • 英文作者:CHEN Anna;WANG Guangjun;CHEN Chan;LI Shuying;LI Weijia;Central South University of Forestry and Technology;National Engineering Lab for Applied Technology of Forestry and Ecology in South China;Huitong Ecological Station for Chinese Fir Plantation;
  • 关键词:叶-根-土 ; 不同林龄 ; 生态化学计量特征 ; ; ; 杉木林
  • 英文关键词:leaf-root-soil;;different stand age;;ecological stoichiometry;;nitrogen;;phosphorus;;Cunninghamia lanceolata plantation
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中南林业科技大学;南方林业生态应用技术国家工程实验室;湖南会同杉木林国家重点野外科学观测研究站;
  • 出版日期:2018-06-08
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金项目(31600355);; 国家林业局软科学研究项目(2016-R33);; 湖南省科技计划项目(2015SK20022)
  • 语种:中文;
  • 页:STXB201811030
  • 页数:10
  • CN:11
  • ISSN:11-2031/Q
  • 分类号:304-313
摘要
以亚热带地区湖南会同5、10、15、20、25年生杉木(Cunninghamia lanceolata)人工林的针叶、细根及土壤(0—15、15—30、30—45 cm)为研究对象,在测定植物叶、细根、土壤中全N、全P含量的基础上,探讨杉木人工林全生命过程叶-根-土N、P化学计量特征的变化,为其经营过程提供基础数据。研究结果表明:(1)林龄对土壤N、P含量及N∶P具有极显著的影响(P<0.01)。土层对土壤N含量影响显著(P<0.01)。各层土壤N、P含量随林龄呈先减后升的趋势,变化显著(P<0.05),土壤N、P含量的最大值分别出现在成熟林、幼龄林阶段,最小值出现在中龄林阶段。土壤N∶P随林龄呈增加趋势,但变化不显著。(2)林龄、器官均对植物N、P含量及N∶P具有极显著的影响(P<0.01)。叶和细根的N、P含量随林龄呈"V"字型的变化趋势,且变化显著(P<0.05),叶和细根N、P含量的最大值均出现在幼龄林、成熟林阶段,最小值出现在中龄林阶段。杉木叶的N∶P随林龄无显著变化,细根的N∶P随林龄显著增加(P<0.05),杉木叶和细根N∶P变化范围分别为11.79—14.86,9.00—22.89。(3)5个林龄杉木叶、细根、土的N、P含量均表现为叶>细根>土,且差异显著(P<0.05)。叶与细根的N、P含量及N∶P均显著正相关(P<0.05)。0—15 cm土壤N与植物叶、细根N无显著相关性,15—30、30—45 cm土壤N与植物叶、细根N在5、10年生时存在显著相关性(P<0.05)。5个林龄杉木叶、细根、土壤之间的P含量及N∶P均存在显著相关性。这些结果说明:在杉木的生长过程中,植物叶、细根以及土壤中养分不断变化,叶、细根、土之间的N、P化学计量特征显示出一定的相关关系。
        We measured total N and P concentrations of leaf,fine root,and soil( 0—15,15—30,30—45 cm) in 5-,10-,15-,20-,and 25-year-old Cunninghamia lanceolata plantations in Huitong,Hunan Province. The objective of this study was to determine the variation in the N and P stoichiometry of leaf-root-soil during the whole life process of Cunninghamia lanceolata plantations, and provide basic data to guide the management of Cunninghamia lanceolata plantations. The following results were obtained.( 1) Stand age had a significant influence on soil N and P concentrations and the N ∶ P ratio( P < 0. 01). Soil layer only had significant influence on soil N concentrations( P < 0. 01). Soil N concentrations decreased with increasing soil depth,whereas soil P concentrations and the N ∶ P ratio showed no significant difference with increasing soil depth. In each soil layer,N and P concentrations initially decreased and then increased significantly with increasing stand age( P < 0. 05). Soil N and P concentrations were the highest in 25-year and 5-year Cunninghamia lanceolata plantations,respectively,and were the lowest in 10-year and 15-year Cunninghamia lanceolata plantations. The soil N ∶ P ratio increased with increasing stand age,although not significantly.( 2) Stand age and organ type had a significant influence on plant N and P concentrations and the N ∶ P ratio( P < 0.01). Leaf and fine root N and P concentrations showed a significant "V-shaped " pattern with increasing stand age( P < 0. 05),whereas fine root P decreased slightly in 20-year Cunninghamia lanceolata plantations. Leaf and fine root N and P concentrations were the lowest in 15-year Cunninghamia lanceolata plantations, and were the highest in 5-year and 25-year Cunninghamia lanceolata plantations,respectively. The leaf N ∶ P ratio did not change significantly with increasing stand age. The range of leaf N ∶ P ratios was 11. 79 to 14. 86. For all stand ages,leaf N ∶ P ratios were lower than 14,except for 20-year Cunninghamia lanceolata plantations,indicating that N was the main factor limiting the growth of Cunninghamia lanceolata.The fine root N ∶ P ratio increased significantly with increasing stand age( P < 0.05),and the range of fine root N ∶ P ratios was 9.00 to 22.89.( 3) During the whole life process of Cunninghamia lanceolata plantations,N and P concentrations were significantly different between leaf,fine root,and soil in the order leaf > fine root > soil( P < 0.05). There were significant correlations between leaf and fine root N and P stoichiometry( P < 0.05),except for the leaf and fine root N of 25-year Cunninghamia lanceolata plantations. However,no significant correlations between 0—15 cm soil and leaf and fine root N concentrations were found. There were significant correlations between 15—30 and 30—45 cm soil and leaf and fine root N and P concentrations in 5-year and 10-year Cunninghamia lanceolata plantations( P < 0. 05),whereas there were no significant correlations between soil and leaf and fine root N and P concentrations in 15-, 20-, and 25-year-old Cunninghamia lanceolata plantations. During the whole life process of Cunninghamia lanceolata plantations,there were significant correlations between leaf and fine root and soil P concentrations and the N ∶ P ratio. It was concluded that with forest development,there have been changes in the nutrients of leaf,fine root,and soil,which reflect the strong links between leaf,fine root,and soil N and P stoichiometry.
引文
[1]Vitousek P M,Howarth R W.Nitrogen limitation on land and in the sea:how can it occur?Biogeochemistry,1991,13(2):87-115.
    [2]Zhang J H,Zhao N,Liu C C,Yang H,Li M L,Yu G R,Wilcox K,Yu Q,He N P.C∶N∶P stoichiometry in China's forests:from organs to ecosystems.Functional Ecology,2017,32(1):50-60.
    [3]贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论.植物生态学报,2010,34(1):2-6.
    [4]Elser J J,Dobberfuhl D R,Mackay N A,Schampel J H.Organism size,life history,and N∶P stoichiometry.Bio Science,1996,46(9):674-684.
    [5]Müller M,Oelmann Y,Schickhoff U,B9hner J,Scholten T.Himalayan treeline soil and foliar C∶N∶P stoichiometry indicate nutrient shortage with elevation.Geoderma,2017,291:21-32.
    [6]Aerts R,Chapin Ⅲ F S.The mineral nutrition of wild plants revisited:a re-evaluation of processes and patterns.Advances in Ecological Research,1999,30:l-67.
    [7]Reich P B,Oleksyn J.Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America,2004,101(30):11001-11006.
    [8]刘海霞,许斌杰,范新峰,张海谷,何彦龙.植物—土壤反馈机制研究综述.青岛农业大学学报:自然科学版,2014,31(2):142-147.
    [9]王维奇,徐玲琳,曾从盛,仝川,张林海.河口湿地植物活体-枯落物-土壤的碳氮磷生态化学计量特征.生态学报,2011,31(23):7119-7124.
    [10]Paul K,Veen G F,Teste F P,Perring M P.Peeking into the black box:a trait-based approach to predicting plant-soil feedback.New Phytologist,2015,206(1):1-4.
    [11]聂兰琴,吴琴,尧波,付姗,胡启武.鄱阳湖湿地优势植物叶片-凋落物-土壤碳氮磷化学计量特征.生态学报,2016,36(7):1898-1906.
    [12]杨佳佳,张向茹,马露莎,陈亚南,党廷辉,安韶山.黄土高原刺槐林不同组分生态化学计量关系研究.土壤学报,2014,51(1):133-142.
    [13]Kang H Z,Xin Z J,Berg B,Burgess P J,Liu Q L,Liu Z C,Li Z H,Liu C J.Global pattern of leaf litter nitrogen and phosphorus in woody plants.Annals of Forest Science,2010,67(8):811.
    [14]Vogt K A,Grier C C,Gower S T,Sprugel D G,Vogt D J.Overestimation of net root production:a real or imaginary problem?Ecology,1986,67(2):577-579.
    [15]Mc Claugherty C A,Aber J D,Melillo J M.The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems.Ecology,1982,63(5):1481-1490.
    [16]胡启武,聂兰琴,郑艳明,吴琴,尧波,郑林.沙化程度和林龄对湿地松叶片及林下土壤C、N、P化学计量特征影响.生态学报,2014,34(9):2246-2255.
    [17]王晶苑,王绍强,李纫兰,闫俊华,沙丽清,韩士杰.中国四种森林类型主要优势植物的C∶N∶P化学计量学特征.植物生态学报,2011,35(6):587-595.
    [18]潘维俦,田大伦,李利村,高正衡.杉木人工林养分循环的研究(一)不同生育阶段杉木林的产量结构和养分动态.中南林学院学报,1981,1(1):1-21.
    [19]Kellogg L E,Bridgham S D.Phosphorus retention and movement across an ombrotrophic-minerotrophic peatland gradient.Biogeochemistry,2003,63(3):299-315.
    [20]Houlton B Z,Wang Y P,Vitousek P M,Field C B.A unifying framework for dinitrogen fixation in the terrestrial biosphere.Nature,2008,454(7202):327-330.
    [21]曹娟,闫文德,项文化,谌小勇,雷丕锋.湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征.林业科学,2015,51(7):1-8.
    [22]Han W X,Fang J Y,Reich P B,Woodward F I,Wang Z H.Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate,soil and plant functional type in China.Ecology Letters,2011,14(8):788-796.
    [23]马玉珠,钟全林,靳冰洁,卢宏典,郭炳桥,郑媛,李曼,程栋梁.中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子.植物生态学报,2015,39(2):159-166.
    [24]Campbell B D,Grime J P.A comparative study of plant responsiveness to the duration of episodes of mineral nutrient enrichment.New Phytologist,1989,112(2):261-267.
    [25]周国逸,闫俊华.鼎湖山区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响.生态学报,2001,21(12):2002-2012.
    [26]刘兴诏,周国逸,张德强,刘世忠,褚国伟,闫俊华.南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征.植物生态学报,2010,34(1):64-71.
    [27]Selvaraj S,Duraisamy V,Huang Z J,Guo F T,Ma X Q.Influence of long-term successive rotations and stand age of Chinese fir(Cunninghamia lanceolata)plantations on soil properties.Geoderma,2017,306:127-134.
    [28]杨振安.不同林龄杉木人工林根系特征和氮磷养分研究[D].杨凌:西北农林科技大学,2014.
    [29]张雷,项文化,田大伦,赵仲辉,陈瑞.第2代杉木林土壤有机碳、全氮对细根分布及形态特征的影响.中南林业科技大学学报,2009,29(3):11-15.
    [30]刘万德,苏建荣,李帅锋,张志钧,李忠文.云南普洱季风常绿阔叶林演替系列植物和土壤C、N、P化学计量特征.生态学报,2010,30(23):6581-6590.
    [31]曹小玉,李际平,闫文德.不同龄组杉木林土壤有机碳与氮磷钾分布特征及耦合关系.土壤通报,2014,45(5):1137-1143.
    [32]田大伦,盘宏华,康文星,方海波.第二代杉木林养分动态研究.中南林学院学报,2001,21(3):6-12.
    [33]盛炜彤,杨承栋,范少辉.杉木人工林的土壤性质变化.林业科学研究,2003,16(4):377-385.
    [34]崔宁洁,刘小兵,张丹桔,张健,刘洋,邓长春,纪托未,陈亚梅.不同林龄马尾松(Pinus massoniana)人工林碳氮磷分配格局及化学计量特征.生态环境学报,2014,23(2):188-195.
    [35]赵亚芳,徐福利,王渭玲.华北落叶松人工林碳氮磷生态化学计量学特征研究展望.北方园艺,2014,38(17):197-203.
    [36]Kerkhoff A J,Enquist B J,Elser J J,Fagan W F.Plant allometry,stoichiometry and the temperature-dependence of primary productivity.Global Ecology and Biogeography,2005,14(6):585-598.
    [37]刘万德,苏建荣,李帅锋,郎学东,张志钧,黄小波.云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征.植物生态学报,2015,39(1):52-62.
    [38]陈婵,王光军,赵月,周国新,李栎,高吉权.会同杉木器官间C、N、P化学计量比的季节动态与异速生长关系.生态学报,2016,36(23):7614-7623.
    [39]郭子武,陈双林,杨清平,李迎春,雷竹林.雷竹林土壤和叶片N、P化学计量特征对林地覆盖的响应.生态学报,2012,32(20):6361-6368.
    [40]曾昭霞,王克林,刘孝利,曾馥平,宋同清,彭晚霞,张浩,杜虎.桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征.植物生态学报,2015,39(7):682-693.
    [41]Tian H Q,Chen G S,Zhang C,Melillo J M,Hall C A S.Pattern and variation of C∶N∶P ratios in China's soils:a synthesis of observational data.Biogeochemistry,2010,98(1/3):139-151.
    [42]罗艳,贡璐,朱美玲,安申群.塔里木河上游荒漠区4种灌木植物叶片与土壤生态化学计量特征.生态学报,2017,37(24):8326-8335.
    [43]Drenovsky R E,Richards J H.Critical N∶P values:predicting nutrient deficiencies in desert shrublands.Plant and Soil,2004,259(1/2):59-69.
    [44]邢雪荣,韩兴国,陈灵芝.植物养分利用效率研究综述.应用生态学报,2000,11(5):785-790.
    [45]gren G I.The C∶N∶P stoichiometry of autotrophs——theory and observations.Ecology Letters,2004,7(3):185-191.
    [46]Güsewell S,Koerselman W.Variation in nitrogen and phosphorus concentrations of wetland plants.Perspectives in Plant Ecology,Evolution and Systematics,2002,5(1):37-61.
    [47]潘复静,张伟,王克林,何寻阳,梁士楚,韦国富.典型喀斯特峰丛洼地植被群落凋落物C∶N∶P生态化学计量特征.生态学报,2011,31(2):335-343.
    [48]Zeng Q,Lal R,Chen Y,An S.Soil,Leaf and root ecological stoichiometry of Caragana korshinskii on the loess plateau of China in relation to plantation age.PLo S One,2017,12(1):e0168890,doi:10.1371/journal.pone.0168890.
    [49]Zeng Q C,Li X,Dong Y H,An S S,Darboux F.Soil and plant components ecological stoichiometry in four steppe communities in the Loess Plateau of China.CATENA,2016,147:481-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700