浮式风机在风浪联合作用下的动力响应分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic response analysis of floating offshore wind turbine in combined wind and wave
  • 作者:蔡恒 ; 朱仁传 ; 汪小佳 ; 范菊
  • 英文作者:CAI Heng;ZHU Renchuan;WANG Xiaojia;FAN Ju;Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration,Shanghai Jiao Tong University;School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University;
  • 关键词:风浪联合 ; 动力响应 ; 势流理论 ; 脉冲响应 ; 准静定系泊模型 ; 叶素动量理论 ; 计算流体力学 ; 粘性阻尼
  • 英文关键词:combined wind and wave;;dynamic response;;potential theory;;impulse response;;quasi-static cable model;;blade element momentum(BEM);;computational fluid dynamics(CFD);;viscous damping
  • 中文刊名:HEBG
  • 英文刊名:Journal of Harbin Engineering University
  • 机构:上海交通大学高新船舶与深海开发装备协同创新中心;上海交通大学船舶海洋与建筑工程学院;
  • 出版日期:2018-09-05 09:28
  • 出版单位:哈尔滨工程大学学报
  • 年:2019
  • 期:v.40;No.267
  • 基金:国家自然科学基金项目(51579147,51479117);; 国家重点基础研究发展计划(2014CB046203)
  • 语种:中文;
  • 页:HEBG201901017
  • 页数:8
  • CN:01
  • ISSN:23-1390/U
  • 分类号:122-129
摘要
为了研究浮式风机以及系缆张力响应问题,本文基于三维线性频域势流理论和脉冲响应函数方法计算时域波浪力,利用准静定系泊模型来模拟系泊力,通过叶素动量理论来计算风力,采用计算流体力学方法得到粘性阻尼系数,建立了风机在风浪联合作用下的时域运动方程。结果表明:在规则波与不规则波单独作用下的纵荡、垂荡响应与试验值相吻合,系缆张力响应则偏小于试验值;在不规则波与风联合作用下,所得的纵荡、垂荡响应在波频范围内与不规则波单独作用下的结果相差不大,而系缆张力响应则同样偏小于试验值。
        Time-domain wave forces are solved based on three-dimensional linear frequency-domain potential theory and impulse response function method to study the problem of motion and mooring tansion response of floating offshore wind turbine( FOWT). Mooring forces are modeled by a quasi-static cable model,wind forces are calculated by blade element momentum( BEM) theory,and viscous damping coefficients are obtained by computational fluid dynamics method to establish the motion equation of FOWT involving wind and wave in time-domain. Results show that under the actions of regular and irregular waves,the surge and heave responses are consistent with the experimental results under the action of regular wave or irregular wave. The mooring tension response is lower than the experimental value. In the combined wind and irregular wave,the surge and heave responses are almost the same as that in the irregular waves within the wave frequency range,and the mooring tension response is lower than the experimental result.
引文
[1]VISELLI A M,GOUPEE A J,DAGHER H J. Model test of a 1:8-scale floating wind turbine offshore in the Gulf of Maine[J]. Journal of offshore mechanics and arctic engineering,2015,137(4):041901.
    [2]RODDIER D,CERMELLI C,AUBAULT A,et al. WindFloat:a floating foundation for offshore wind turbines[J].Journal of renewable and sustainable energy,2010,2(3):033104.
    [3]GOUPEE A J,KOO B J,KIMBALL R W,et al. Experimental comparison of three floating wind turbine concepts[J]. Journal of offshore mechanics and arctic engineering,2014,136(2):020906.
    [4]KOO B J,GOUPEE A J,KIMBALL R W,et al. Model tests for a floating wind turbine on three different floaters[J]. Journal of offshore mechanics and arctic engineering,2014,136(2):020907.
    [5]COULLING A J,GOUPEE A J,ROBERTSON A N,et al.Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data[J]. Journal of renewable and sustainable energy,2013,5(2):023116.
    [6]KOO B,GOUPEE A J,LAMBRAKOS K,et al. Model test data correlations with fully coupled hull/mooring analysis for a floating wind turbine on a semi-submersible platform[C]//Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering.Francisco,California,USA,2014.
    [7]MASCIOLA M,ROBERTSON A,JONKMAN J,et al. Assessment of the importance of mooring dynamics on the global response of the Deep CWind floating semisubmersible offshore wind turbine[C]//Proceedings of 23rd International Offshore and Polar Engineering. Anchorage,Alaska,USA,2013.
    [8]HSU W T,THIAGARAJAN K P,SHI Shan. Numerical modeling of the aero-hydro coupling of a floating offshore wind turbine[C]//Proceedings of the 25th International Ocean and Polar Engineering Conference. Kona, Hawaii,USA,2015.
    [9]MORISON J R,JOHNSON J W,SCHAAF S A. The force exerted by surface waves on piles[J]. Journal of petroleum technology,1950,2(5):149-154.
    [10]TRAN T T,KIM D H. The coupled dynamic response computation for a semi-submersible platform of floating offshore wind turbine[J]. Journal of wind engineering and industrial aerodynamics,2015,147:104-119.
    [11]TRAN T T,KIM D H. Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach[J]. Renewable energy,2016,92:244-261.
    [12]BENITZ M A,SCHMIDT D P,LACKNER M A,et al.Comparison of hydrodynamic load predictions between reduced order engineering models and computational fluid dynamics for the OC4-DeepCwind semi-submersible[C]//Proceedings of the ASME 2014 33rd International Conference on Ocean,Offshore and Arctic Engineering.San Francisco,California,USA,2014.
    [13]MASCIOLA M,JONKMAN J,ROBERTSON A. Implementation of a multisegmented,quasi-static cable model[C]//Proceedings of the 23rd International Offshore and Polar Engineering Conference. Anchorage,Alaska,USA,2013.
    [14]HANSEN M O L. Aerodynamics of wind turbines[M].London:Science Publishers,2000:45-62,147-156.
    [15]ROBERTSON A,JONKMAN J,MASCIOLA M,et al.Definition of the semisubmersible floating system for Phase II of OC4[R]. NREL/TP-5000-60601. Golden:National Renewable Energy Laboratory,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700