围护结构内表面发射率对人体热舒适的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of inner surface emissivity of envelope on human thermal comfort
  • 作者:卢素梅 ; 孟庆林
  • 英文作者:Lu Sumei;Meng Qinglin;State Key Laboratory of Subtropical Building Science,South China University of Technology;
  • 关键词:围护结构 ; 内表面发射率 ; 热舒适 ; 预计平均热感觉指数(PMV) ; 辐射换热 ; 平均辐射温度
  • 英文关键词:envelope;;inner surface radiance rate;;thermal comfort;;predicted mean vote(PMV);;radiation heat transfer;;mean radiant temperature
  • 中文刊名:NTKT
  • 英文刊名:Heating Ventilating & Air Conditioning
  • 机构:华南理工大学亚热带建筑科学国家重点实验室;华南理工大学亚热带建筑科学国家重点实验室建筑节能研究中心;
  • 出版日期:2019-05-15
  • 出版单位:暖通空调
  • 年:2019
  • 期:v.49;No.358
  • 基金:国家自然科学基金重大项目“极端热湿气候区超低能耗建筑研究”(编号:51590912);; 广东省自然科学基金资助项目(编号:2016A030313506)
  • 语种:中文;
  • 页:NTKT201905028
  • 页数:7
  • CN:05
  • ISSN:11-2832/TU
  • 分类号:118-124
摘要
基于人体热平衡和辐射换热原理,对Fanger的PMV模型进行了改进,建立了基于围护结构内表面发射率的热舒适模型,分析了冬夏季工况下不同内表面发射率对人体热舒适和平均辐射温度的影响,得到了满足人体热舒适与节能要求的围护结构内表面最佳发射率。结果表明:夏季工况下,随着表面发射率的减小,PMV值减小,同等舒适条件下室内设计温度可提高1~2℃;冬季工况下,随着表面发射率的减小,PMV值明显增大,同等舒适条件下室内设计温度可降低2~3℃。
        Based on the principle of human heat balance and radiation heat transfer, improves the PMV model of Fanger, and establishes a thermal comfort model based on the inner surface emissivity of envelope. Analyses the influence of different inner surface emissivity on human thermal comfort and mean radiant temperature in winter and summer working conditions, and obtains the optimal inner surface emissivity of envelope meeting the requirements of human thermal comfort and energy saving. The results show that the PMV value decreases with the decrease of surface emissivity in summer, and the indoor design temperature can be increased by 1 to 2 ℃ under the same comfortable conditions. The PMV value increases obviously with the decrease of surface emissivity in winter, and the indoor design temperature can be reduced by 2 to 3 ℃ under the same comfortable conditions.
引文
[1] 茹继平,刘加平,曲久辉,等.国家自然科学基金委员会——中国科学院2011—2020学科发展战略研究专题报告集“建筑、环境与土木工程”[M].北京:中国建筑工业出版社,2011:120- 121
    [2] FANGER P O.Thermal environment—human requirements[J].Environmentalist,1986,6(4):275- 278
    [3] DE DEAR R.Developing an adaptive model of thermal comfort and preference[G]//ASHRAE Trans,1998,104(1):73- 81
    [4] 马钦斯基B Д.建筑热工原理[M].丰定国,译.北京:高等教育出版社,1959:135- 136
    [5] JELLE B P,KALNS S E,TAO G.Low-emissivity materials for building applications:a state-of-the-art review and future research perspectives[J].Energy and Buildings,2015,96:329- 356
    [6] GUO W,QIAO X,HUANG Y,et al.Study on energy saving effect of heat-reflective insulation coating on envelopes in the hot summer and cold winter zone[J].Energy and Buildings,2012,50:196- 203
    [7] LILIC D.Influence of window and door position at the wall on the radiation heat exchange in relation to interior room surfaces[J].Energy and Buildings,2003,35(6):533- 538
    [8] BUCKINGHAM S,GOFFAUX C,JACQUET D,et al.CFD investigation of the influence of low emissivity coatings to reduce domestic energy consumption[C]//The 6th European Thermal Sciences Conference,2012:1- 10
    [9] HUGO G.Effects of low emissive wall coatings on thermal comfort and energy consumption[J].High Temperatures-High Pressures,2001,33(1):1- 8
    [10] 刘磊.室内遮热措施的能耗及舒适性研究[D].重庆:重庆大学,2009:41- 42
    [11] FANGER P O.Thermal comfort analysis and applications in environment engineering[J].Thermal Comfort Analysis and Applications in Environmental Engineering,1972,3(3):225- 240
    [12] FANGER P O,TOFTUM J.Extension of the PMV model to non-air-conditioned buildings in warm climates[J].Energy and Buildings,2002,34(6):533- 536
    [13] CETIN K S,MANUEL L,NOVOSELAC A.Effect of technology-enabled time-of-use energy pricing on thermal comfort and energy use in mechanically-conditioned residential buildings in cooling dominated climates[J].Building and Environment,2016,96:118- 130
    [14] 陈启高.建筑热物理基础[M].西安:西安交通大学出版社,1991:110- 111
    [15] 张川燕,王子介.辐射供冷地面对围护结构内表面温度及室内热舒适的影响[J].建筑科学,2008,24(10):79- 84
    [16] FANG L,CLAUSEN G,FANGER P O.Impact of temperature and humidity on chemical and sensory emissions from building materials[J].Indoor Air,1999,9(3):193- 201
    [17] 王丽娟,狄育慧.平均辐射温度应用探讨[J].暖通空调,2015,45(1):87- 90
    [18] 中国建筑科学研究院.民用建筑热工设计规范:GB 50176—2016[S].北京:中国建筑工业出版社,2016:11
    [19] 闫斌,郭春信.舒适性空调室内设计参数的优化[J].暖通空调,1999,29(1):44- 45
    [20] 殷平.室内空气计算参数对空调系统经济性的影响[J].暖通空调,2002,32(2):21- 25
    [21] 陶文铨.传热学[M].4版.北京:高等教育出版社,2010:236- 237
    [22] 朱颖心.建筑环境学[M].北京:中国建筑工业出版社,2017:103- 104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700