非晶态NiB纳米催化剂的制备及其对对硝基苯酚加氢的催化活性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of amorphous NiB nanocatalysts and its catalytic activity for hydrogenation of 4-nitrophenol
  • 作者:魏磊 ; 马麦霞 ; 王东升 ; 卢艳红 ; 张素玲 ; 王茜
  • 英文作者:WEI Lei;MA Mai-xia;WANG Dong-sheng;LU Yan-hong;ZHANG Su-ling;WANG Qian;College of Chemistry and Materials Science, Langfang Normal University;
  • 关键词:对硝基苯酚 ; 催化加氢 ; 非晶态催化剂 ; NiB纳米粒子 ; 化学刻蚀
  • 英文关键词:4-nitrophenol;;catalytic hydrogenation;;amorphous catalyst;;NiB nanoparticle;;chemical etching
  • 中文刊名:ZYXZ
  • 英文刊名:The Chinese Journal of Nonferrous Metals
  • 机构:廊坊师范学院化学与材料科学学院;
  • 出版日期:2019-05-15
  • 出版单位:中国有色金属学报
  • 年:2019
  • 期:v.29;No.242
  • 基金:河北省教育厅资助科研项目(BJ2016044);; 河北省自然科学基金资助项目(B2017408042)~~
  • 语种:中文;
  • 页:ZYXZ201905025
  • 页数:7
  • CN:05
  • ISSN:43-1238/TG
  • 分类号:238-244
摘要
对共还原法合成的NiZnB粉体进行NaOH刻蚀后脱锌而制得非晶态NiB纳米催化剂(NiB-etch),考察其对对硝基苯酚(4-NP)加氢的催化活性。通过透射电子显微镜、X射线衍射、氮气吸/脱附等温曲线、电感耦合等离子发射光谱进行材料表征,利用紫外-可见分光光度计定量分析4-NP催化加氢速率。结果表明:与常规NiB催化剂相比,NiB-etch的比表面积增加2.3倍,催化反应速率常数提高2.5倍。另外,对NiZnB进行150℃下热处理,可使NiB-etch催化活性进一步提高1.7倍,反应速率常数增至0.93 min~(-1)。
        Ni Zn B powders were synthesized by co-reduction method, and the amorphous NiB nanocatalysts(denoted as NiB-etch) were achieved by etching the NiZnB with sodium hydroxide for catalytic hydrogenation of 4-nitrophenol(4-NP). For catalysts characterization, the transmission electron microscope(TEM), X-ray diffraction(XRD), N2 adsorption/desorption isotherms and inductive coupled plasma emission spectrometer(ICP-AES) were applied,respectively. The ultraviolet-visible spectrophotometer(UV-vis) was employed to quantificationally measure the conversion rate of 4-NP. The results indicate that the specific surface area and apparent reaction rate constant are 2.3 and2.5 times higher than those of conventional NiB catalyst, respectively. By treating NiZnB at 150 ℃, the catalytic activity of NiB-etch measured is 1.7 times higher than that of untreated sample, leading to an apparent rate constant up to 0.93 min~(-1).
引文
[1]CHEN S,XU Z P,ZHANG Q,LU G Q,HAO Z P,LIU S.Studies on adsorption of phenol and 4-nitrophenol on MgAlmixed oxide derived from Mg Al-layered double hydroxide[J].Separation and Purification Technology,2009,67(2):194-200.
    [2]YANG Y,YE J,XU L,ZHANG Y,WEN J,WANG H.Synergistic effect of TNSs-TiO2NPs/3DGNs catalysts on photocatalytic degradation of 4-nitrophenol under visible light[J].Applied Surface Science,2018,433:398-407.
    [3]李美超,吴海峰,胡佳琦,马淳安.对硝基苯酚在酸性介质中的电化学还原反应机理[J].物理化学学报,2008,24(10):1937-1940.LI Mei-chao,WU Hai-feng,HU Jia-qi,MA Chun-an.Electroreduction mechanism of p-nitrophenol in sulfuric acid[J].Acta Physico-Chimica Sinica,2008,24(10):1937-1940.
    [4]姜元国,陈日志,邢卫红.对硝基苯酚催化加氢研究进展[J].化工进展,2011,30(2):309-313.JIANG Yuan-guo,CHEN Ri-zhi,XING Wei-hong.Research progress of p-nitrophenol catalytic hydrogenation[J].Chemical Industry and Engineering Progress,2011,30(2):309-313.
    [5]EICHENBAUM G,JOHNSON M,KIRKLAND D,NEILL PO,STELLAR S,BIELAWNE J,DEWIRE R,AREIA D,BRYANT S,WEINER S,DESAI-KRIEGER D,GUZZIE-PECK P,EVANS D C,TONELLI A.Assessment of the genotoxic and carcinogenic risks of p-nitrophenol when it is present as an impurity in a drug product[J].Regulatory Toxicology and Pharmacology,2009,55(1):33-42.
    [6]ZHAO P,FENG X,HUANG D,YANG G,ASTRUC D.Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles[J].Coordination Chemistry Reviews,2015,287:114-136.
    [7]LIU P,ZHAO M.Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol(4-NP)[J].Applied Surface Science,2009,255(7):3989-3993.
    [8]YU X F,MAO L B,GE J,YU Z L,LIU J W,YU S H.Threedimensional melamine sponge loaded with Au/ceria nanowires for continuous reduction of p-nitrophenol in a consecutive flow system[J].Science Bulletin,2016,61(9):700-705.
    [9]殷月月,杨勇,张良柱,李永生,马云峰,杨莉莉,黄政仁.金/钯哑铃状纳米晶的制备及其催化对硝基苯酚还原研究[J].无机材料学报,2018,33(1):19-26.YIN Yue-yue,YANG Yong,ZHANG Liang-zhu,LI Yongsheng,MA Yun-feng,YANG Li-li,HUANG Zheng-ren.Facile synthesis of Au/Pd nano-dumbells for catalytic reduction of p-nitrophenol[J].Journal of Inorganic Materials,2018,33(1):19-26.
    [10]杜艳,陈洪龄,陈日志,徐南平.高活性纳米镍催化剂的制备及其催化性能研究[J].高效化学工程学报,2004,18(4):515-518.DU Yan,CHEN Hong-ling,CHEN Ri-zhi,XU Nan-ping.Synthesis of nickel nanoparticles and the study of its catalytic performance[J].Journal of Chemical Engineering of Chinese Universities,2004,18(4):515-518.
    [11]王海棠,朱银华,杨祝红,刘金龙,孙庆杰,陆小华,冯新.新型Ni/TiO2催化剂用于对硝基苯酚催化加氢[J].催化学报,2009,30(5):414-420.WANG Hai-tang,ZHU Yin-hua,YANG Zhu-hong,LIU Jinlong,SUN Qing-jie,LU Xiao-hua,FENG Xin.p-nitrophenol hydrogenation over a novel Ni/Ti O2 catalyst[J].Chinese Journal of Catalysis,2009,30(5):414-420.
    [12]尹红伟,陈吉祥,张继炎.焙烧及还原温度对对硝基苯酚加氢合成对氨基苯酚Ni/TiO2催化剂性能的影响[J].催化学报,2007,28(5):435-440.YIN Hong-wei,CHEN Ji-xiang,ZHANG Ji-yan.Effects of calcination and reduction temperature on catalytic performance of Ni/TiO2 catalyst for hydrogenation of p-nitrophenol to p-animophenol[J].Chinese Journal of Catalysis,2007,28(5):435-440.
    [13]BLOSI M,ALBONETTI S,COSTA A L,SANGIORGI N,SANSON A.Easily scalable synthesis of Ni nanosols suitable for the hydrogenation of 4-nitrophenol to p-aminophenol under mild condition[J].Chemical Engineering Journal,2013,215/216:616-625.
    [14]KARAKAS K,CELEBIOGLU A,CELEBI M,UYAR T,ZAHMAKIRAN M.Nickel nanoparticles decorated on electrospun polycaprolactone/chitosan nanofibers as flexible,highly active and reusable nanocatalyst in the reduction of nitrophenols under mild conditions[J].Applied Catalysis B(Environmental),2017,203:549-562.
    [15]ZONG B,MU X,ZHANG X,MENG X,QIAO M.Research,development,and application of amorphous nickel alloy catalysts prepared by melt-quenching[J].Chinese Journal of Catalysis,2013,34(5):828-837.
    [16]WEI L,MA M,LI W,WANG D,DONG X,WEI P.Hydrogen generation from the decomposition of hydrous hydrazine using amorphous NiB nanocatalysts prepared by chemical etching method[J].Functional Materials Letters,https://doi.org/10.1142/S1793604718500972.
    [17]XIANG C,JIANG D,SHE Z,ZOU Y,CHU H,QIU S,ZHANG H,XU F,TANG C,SUN L.Hydrogen generation by hydrolysis of alkaline sodium borohydride using a cobaltzinc-boron/graphene nanocomposite treated with sodium hydroxide[J].International Journal of Hydrogen Energy,2015,40(11):4111-4118.
    [18]ZHANG Q,LI H,GAO P,WANG L.PVP-NiB amorphous catalyst for selective hydrogenation of phenol and its derivatives[J].Chinese Journal of Catalysis,2014,35(11):1793-1799.
    [19]FENG W,MA Y,NIU L,ZHANG H,BAI G.Confined preparation of ultrafine Ni B amorphous alloys for hydrogenation[J].Catalysis Communications,2018,109:20-23.
    [20]SHI X,ZHENG F,YAN N,CHEN Q.CoMn2O4 hierarchical microspheres with high catalytic activity towards p-nitrophenol reduction[J].Dalton Transactions,2014,43(37):13865-13873.
    [21]JADBABAEI N,SLOBODJIAN R J,SHUAI D,ZHANG H.Catalytic reduction of 4-nitrophenol by palladium-resin composites[J].Applied Catalysis A,2017,543:209-217.
    [22]GIRGSDIES F,SCHLOGL R,TRUNSCHKE A.In-situ X-ray diffraction study of phase crystallization from an amorphous MoVTeNb oxide catalyst precursor[J].Catalysis Communications,2012,18:60-62.
    [23]LI H,WANG W,LI H,DENG J F.Crystallization deactivation of Ni-P/SiO2 amorphous catalyst and the stabilizing effect of silica support on the Ni-P amorphous structure[J].Journal of Catalysis,2000,194(2):211-221.
    [24]LIU X,KHINAST J G,GLASSER B J.Drying of supported catalysts for low melting point precursors:Impact of metal loading and drying methods on the metal distribution[J].Chemical Engineering Science,2012,79:187-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700