黄豆黄素与黄豆黄苷吸收光谱和荧光光谱的比较研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparative Study of Absorption and Fluorescence Spectra of Glycitein and Glycitin
  • 作者:李文红 ; 王丹阳 ; 曹津津 ; 魏永巨
  • 英文作者:LI Wenhong;WANG Danyang;CAO Jinjin;WEI Yongju;Department of Environmental and Chemical Engineering,Hebei College of Industry and Technology;College of Chemistry and Material Science,Hebei Normal University;
  • 关键词:异黄酮 ; 黄豆黄素 ; 黄豆黄苷 ; 裂解反应 ; 荧光增强
  • 英文关键词:Isoflavone;;Glycitein;;Glycitin;;Cleavage reaction;;Fluorescence enhancement
  • 中文刊名:GDXH
  • 英文刊名:Chemical Journal of Chinese Universities
  • 机构:河北工业职业技术学院环境与化学工程系;河北师范大学化学与材料科学学院;
  • 出版日期:2019-01-10
  • 出版单位:高等学校化学学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(批准号:20975029,81173496);; 河北省科技计划自筹项目(批准号:17273003);; 河北工业职业技术学院博士基金(批准号:BZ201701)资助~~
  • 语种:中文;
  • 页:GDXH201901007
  • 页数:8
  • CN:01
  • ISSN:22-1131/O6
  • 分类号:55-62
摘要
研究了黄豆黄素和黄豆黄苷在不同pH条件下的吸收光谱和荧光光谱,从分子结构的角度解释了二者呈现不同光谱特征的原因.黄豆黄素分子基本无荧光.在弱碱性时,黄豆黄素分子发生7-OH质子的电离,导致吸收光谱中320 nm的吸收峰红移至348 nm.采用pH-光度法测得7-OH质子的电离常数pK_(a1)=7. 08±0. 04.黄豆黄素一价阴离子呈现较强荧光,最大激发和发射波长λ_(ex)/λ_(em)分别为334 nm/464 nm,荧光量子产率为0. 049.在碱性溶液中,黄豆黄素4'-OH质子电离,导致吸收光谱中254 nm的吸收峰红移至260 nm,电离常数pK_(a2)=9. 96±0. 01.黄豆黄苷分子基本无荧光.在碱性条件下,黄豆黄苷分子的4'-OH质子发生电离,导致吸收光谱中256 nm的吸收峰红移至280 nm,电离常数p Ka=9. 81±0. 03.黄豆黄苷阴离子基本无荧光,但在热碱性条件下发生γ-吡喃酮环裂解反应而产生较强荧光,λ_(ex)/λ_(em)为288 nm/388 nm,裂解产物的荧光量子产率为0. 056.虽然,黄豆黄苷与黄豆黄素是苷与苷元的关系,但黄豆黄苷不能在热碱性条件下通过糖苷水解转变为黄豆黄素,二者的荧光增强机理存在本质不同.
        The absorption and fluorescence spectra of glycitein and glycitin in aqueous solutions with different pH values were investigated in detail,and the reasons why the two presented different spectral characteristics were explained in the viewpoint of molecular structure. The molecular form of glycitein is essentially no fluorescence. Under weak alkaline condition,the 7-OH proton ionization causes a redshift of the absorbance peak at 320 nm to 348 nm. The proton ionization constant is measured to be pK_(a1)= 7. 08±0. 04,by a pH-photometric method. The univalent-anion form of glycitein exhibit a fairly strong fluorescence with maximum excitation and emission wavelengths( λ_(ex)/λ_(em)) of 334 nm/464 nm,and the fluorescence quantum yield is measured to be 0. 049. In alkaline solutions,the ionization of 4'-OH proton of glycitein causes a redshift of the absorbance peak at 254 nm to 260 nm,the ionization constant is pK_(a2)= 9. 96 ± 0. 01. The molecular form of glycitin has almost no fluorescence. Under alkaline conditions,the ionization of 4'-OH proton causes a redshift of the absorbance peak at 256 nm to 280 nm,with pK_a= 9. 81±0. 03. The anion form of glycitin has almost no fluorescence,but the cleavage reaction of γ-pyrone ketone ring occurs under hot and alkaline conditions and produces a fairly strong fluorescence,with λ_(ex)/λ_(em)of 288 nm/388 nm,and the fluorescence quantum yield of the cleavage reaction product is 0. 056. Although the relationship between glycitin and glycitein is as that of glycoside and aglycone,but glycitin cannot be converted to glycitein by means of hydrolysis of glycoside under hot alkaline conditions. The fluorescence enhancement mechanisms of these two are essentially different.
引文
[1] Singleton J. A.,Stikeleather L. F.,Sanford J. H.,J. Am. Oil Chem. Soc.,2002,79(8),741—748
    [2] Kim E. Y.,Hong K. B.,Suh H. J.,Choi H. S.,Food Funct.,2015,6(11),3512—3521
    [3] Shi S. Y.,Ma Y. J.,Zhang Y. P.,Liu L. L.,Liu Q.,Peng M. J.,Xiong X.,Sep. Purif. Technol.,2012,89(2),225—233
    [4] Wei Q. K.,Jone W. W.,Fang T. J.,J. Food and Drug Anal.,2004,12(4),324—331
    [5] Ma X. M.,Guo S. R.,Duan Z. W.,Wang X. Y.,Li X.,Chinese Traditional and Herbal Drugs,2007,38(11),1645—1647(马学敏,郭树仁,段震文,王祥云,李霄.中草药,2007,38(11),1645—1647)
    [6] Nagata Y.,Sugiyama Y.,Fukuta F.,Takayanagi A.,Masumori N.,Tsukamoto T.,Akasaka H.,Ohnishi H.,Saitoh S.,Miura T.,Moriyama K.,Tsuji H.,Akaza H.,Mori M.,Int. Urol. Nephrol.,2016,48,1453—1460
    [7] Pyo Y. H.,J. Food Science and Nutrition,2007,12,26—34
    [8] Pyo Y. H.,Seong K. S.,J. Agricultural and Food Chemistry,2009,57,8617—8622
    [9] Li Y.,Zhang H.,Food Funct.,2017,8,2935—2944
    [10] Glabska D.,Guzek D.,Grudzinska D.,Lech G.,World J. Gastroenterol,2017,23(29),5356—5363
    [11] Kwon D. Y.,Daily J. W. I.,Kim H. J.,Park S.,Nutrition Research,2010,30,1—13
    [12] Puri A.,Panda B. P.,J. Chromatographic Science,2014,(5),1—7
    [13] da Costa C. I.,Braga F. C.,Soares C. D. V.,de Aguiar N. E.,Pianetti G. A.,Condessa F. A.,Barbosa T. A. F.,Campos L. M. M.,J. Chromatogr. B,2006,836,74—78
    [14] Qu L. P.,Fan G. R.,Peng J. Y.,Mi H. M.,Fitoterapia,2007,78,200—204
    [15] Auwerter L. C. C.,Wanczinski A. E.,Chiandotti R. S.,Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy,2012,22(6),1344—1348
    [16] Thomas B. F.,Zeisel S. H.,Busby M. G.,Hill J. M.,Mitchell R. A.,Scheffler N. M.,Brown S. S.,Bloeden L. T.,Dix K. J.,Robert Jeffcoat A.,J. Chromatogr. B,2001,760(2),191—205
    [17] Wei Y. J.,Li N.,Qin S. J.,Spectroscopy and Spectral Analysis,2004,24(6),647—651(魏永巨,李娜,秦身钧.光谱学与光谱分析,2004,24(6),647—651)
    [18] Li L. R.,Liu C. G.,Wei Y. J.,Spectroscopy and Spectral Analysis,2011,31(10),2763—2766(李丽然,刘翠格,魏永巨.光谱学与光谱分析,2011,31(10),2763—2766)
    [19] Li W. H.,Sun C. M.,Wei Y. J.,Acta Pharmaceutica Sinica,2015,50(10),1324—1329(李文红,孙冲梅,魏永巨.药学学报,2015,50(10),1324—1329)
    [20] Li W. H.,Cao J. J.,Lu R.,Wei Y. J.,Spectroscopy and Spectral Analysis,2016,36(4),1007—1012(李文红,曹津津,卢蕊,车翠霞,魏永巨.光谱学与光谱分析,2016,36(4),1007—1012)
    [21] Zhang P. C.,Flavonoids Chemistry,Chemical Industry Press,Beijing,2009,231—232(张培成.黄酮化学,北京:化学工业版社,2009,231—232)
    [22] Pei X.,Zhao J.,Cai P.,Sun W.,Ren J.,Wu Q.,Zhang S.,Tian C.,Protein Expression and Purification,2016,119,75—84
    [23] Prasad L. N.,Shah N.,International Food Research J.,2011,19(2),433—439

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700