活性炭/硒化钼近红外光催化降解氨氮的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photocatalytic degradation of ammonia nitrogen under near-infrared light irradiation via activated carbon/molybdenum selenide
  • 作者:顾勤勤 ; 刘守清
  • 英文作者:GU Qinqin;LIU Shouqing;School of Chemistry,Biology and Materials Engineering,SUST;Jiangsu Key Laboratory for Environment Functional Materials;
  • 关键词:活性炭/硒化钼 ; 复合材料 ; 近红外 ; 光催化 ; 氨氮 ; 降解
  • 英文关键词:AC/MoSe2;;composite materials;;near infrared light;;photocatalysis;;ammonia nitrogen;;degradation
  • 中文刊名:TDSY
  • 英文刊名:Journal of Suzhou University of Science and Technology(Natural Science Edition)
  • 机构:苏州科技大学化学生物与材料工程学院;江苏省环境功能材料重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:苏州科技大学学报(自然科学版)
  • 年:2019
  • 期:v.36;No.166
  • 基金:国家自然科学基金资助项目(21576175);; 江苏省产业前瞻项目(BE2015190)
  • 语种:中文;
  • 页:TDSY201902010
  • 页数:8
  • CN:02
  • ISSN:32-1871/N
  • 分类号:51-58
摘要
采用水热法合成了活性炭/硒化钼(AC/MoSe_2)复合材料,采用X射线粉末衍射、透射电子显微镜、拉曼光谱以及紫外-可见-近红外漫反射光谱和电子能谱等方法对催化剂的结构和性能进行了表征。以AC/MoSe_2为催化剂,在近红外光下进行氨氮降解研究。结果表明,当氨氮初始浓度为100.0 mg·L~(-1)、溶液的pH值为10.5、催化剂量为0.1 g、AC含量为5%、近红外光照射11 h时,AC/MoSe_2复合材料降解氨氮的效率达到95.7%。在相同条件下,纯硒化钼对氨氮的降解率只有68.0%。动力学研究表明,氨氮降解遵循一级反应动力学规律,其表观速率常数的平均值为0.188 2 h~(-1)。气相色谱检测表明,氨氮被转化为氮气。7次循环光催化降解实验显示,AC/MoSe_2复合材料非常稳定。
        Activated carbon/Molybdenum selenide(AC/MoSe_2) composite was synthesized by hydrothermal method. The structure and properties of the catalyst were characterized by XRD,Raman,SEM,TEM,UV-VIS-INF-DRS and XPS. The ammonia nitrogen degradation was studied with AC/MoSe_2 as catalyst in near infrared light. The results show that the degradation efficiency of ammonia nitrogen reaches 95.7% using 0.1 g AC/MoSe_2(AC 5.0 wt %) composite as the photocatalyst in the 100.0 mg·L~(-1) ammonia-nitrogen solution with pH 10.5 under near-infrared light irradiation for 11 h,while the degradation ratio is only 68.0% using MoSe_2 as the photocatalyst under similar conditions. The kinetic studies show that the ammonia degradation follows the first order reaction kinetics,and the average value of its apparent rate constant is 0.188 2 h~(-1). Seven rounds of photocatalytic degradation experiments show that AC/MoSe_2 is very stable.
引文
[1]HOFFMANN M R,CHOI W,BAHNEMANN D W.Environmental applications of semiconductor photocatalysis[J].Chemical Reviews,1995,95(1):69-96.
    [2]CHEN X,SHEN S,GUO L,et al.Semiconductor-based photocatalytic hydrogen generation[J].Chemical Reviews,2010,110(11):6503-6570.
    [3]ASAHI R,MORIKAWA T,IRIE H,et al.Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst:designs,developments,and prospects[J].Chemical Reviews,2014,114(19):9824-9852.
    [4]WETCHAKUN N,CHAIWICHAIN S,INCEESUNGVORN B,et al.BiVO(4)/CeO(2)nanocomposites with high visible-light-induced photocatalytic activity[J].Acs Applied Materials&Interfaces,2012,4(7):3718.
    [5]TANG Y,DI W,ZHAI X,et al.Nir-responsive photocatalytic activity and mechanism of NaYF4:Yb,Tm@TiO2core-shell nanoparticles[J].Acs Catalysis,2013,3(3):405-412.
    [6]DAGHRIR R,DROGUI P,ROBERT D.Modified TiO2for Environmental photocatalytic applications:a review[J].Industrial&Engineering Chemistry Research,2013,52(10):3581-3599.
    [7]CUI J,LI Y,LIU L,et al.Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions[J].Nano Letters,2015,15(10):6295.
    [8]MULLER G A,COOK J B,KIM H S,et al.High performance pseudocapacitor based on 2d layered metal chalcogenide nanocrystals[J].Nano Letters,2015,15(3):1911.
    [9]LEMBKE D,BERTOLAZZI S,KIS A.Single-layer MoS2electronics[J].Acc Chem Res,2015,48(1):100.
    [10]张强,马锡英.二维硒化钼薄膜的研究进展[J].微纳电子技术,2016,53(11):719-725.
    [11]胡坤宏.纳米二硫化钼的形态可控合成及其催化与润滑性能研究[D].合肥:合肥工业大学,2010.
    [12]SEKINE T,IZUMI M,NAKASHIZU T,et al.Raman scattering and infrared reflectance in 2H-MoSe2[J].Journal of the Physical Society of Japan,1980,49(3):1069-1077.
    [13]KUMAR S,SCHWINGENSCHLGL U.Thermoelectric response of bulk and monolayer MoSe2and WSe2[J].Chemistry of Materials,2015,27(4):1278-1284.
    [14]TERRONES H,LPEZ-URAS F,TERRONES M.Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides[J].Scientific Reports,2013,3:1549(1-7).
    [15]TONGAY S,ZHOU J,ATACA C,et al.Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors:MoSe2versus MoS2[J].Nano Letters,2012,12(11):5576-5580.
    [16]FAN C,WEI Z,YANG S,et al.Synthesis of MoSe2flower-like nanostructures and their photo-responsive properties[J].Rsc Advances,2013,4(2):775-778.
    [17]SUN D,FENG S,TERRONES M,et al.Formation and interlayer decoupling of colloidal MoSe2nanoflowers[J].Chemistry of Materials,2015,27(8):3167-3175.
    [18]WU Y,XU M,CHEN X,et al.CTAB-assisted synthesis of novel ultrathin MoSe2nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light[J].Nanoscale,2015,8(1):440-450.
    [19]BONSEN E M,SCHROETER S,JACOBS H,et al.Photocatalytic degradation of ammonia with TiO2as photocatalyst in the laboratory and under the use of solar radiation[J].Chemosphere,1997,35(35):1431-1445.
    [20]TANG H,HUANG H,WANG X,et al.Hydrothermal synthesis of 3D hierarchical flower-like MoSe2microspheres and their adsorption performances for methyl orange[J].Applied Surface Science,2016,379:296-303.
    [21]周姗姗,肖波,刘成宝,等.氧化石墨烯-铁酸镍杂化催化剂可见光降解氨氮[J].苏州科技学院学报(自然科学版),2016,33(2):23-29.
    [22]LIU S Q,ZHU X L,ZHOU Y,et al.Smart photocatalytic removal of ammonia through molecular recognition of zinc ferrite/reduced graphene oxide hybrid catalyst under visible-light irradiation[J].Catalysis Science&Technology,2017,7(15):3210-3219.
    [23]薛婷婷,张欢,刘守清.石墨烯-氧化铈杂化材料的合成及可见光催化降解氨氮[J].功能材料,2017,48(3):3218-3222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700