荧光素酶在蛋白质相互作用研究中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Luciferase as A Powerful Tool for The Analysis of Protein-Protein Interaction
  • 作者:宋晓菡 ; 王楠
  • 英文作者:SONG Xiao-Han;WANG Nan;Institute of Materia Medica, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study,Chinese Academy of Medical Sciences and Peking Union Medical College;
  • 关键词:生物发光 ; 荧光素酶 ; 蛋白质相互作用 ; 片段互补 ; 生物发光共振能量转移
  • 英文关键词:bioluminescence;;luciferase;;protein-protein interactions;;fragment complementation;;bioluminescence resonance energy transfer
  • 中文刊名:SWHZ
  • 英文刊名:Chinese Journal of Biochemistry and Molecular Biology
  • 机构:中国医学科学院&北京协和医学院药物研究所新药作用机制研究与药效评价北京市重点实验室;
  • 出版日期:2019-01-20
  • 出版单位:中国生物化学与分子生物学报
  • 年:2019
  • 期:v.35
  • 基金:北京市自然科学基金项目(No.7162134)资助~~
  • 语种:中文;
  • 页:SWHZ201901006
  • 页数:8
  • CN:01
  • ISSN:11-3870/Q
  • 分类号:35-42
摘要
蛋白质相互作用参与细胞的多项生理活动,是生命科学研究的一个重要领域。化学发光,特别是基于生物酶的化学发光即生物发光,提供了极灵敏的检测信号,因而在实际应用中具有诸多优势。荧光素酶如萤火虫荧光素酶、细菌荧光素酶、海肾荧光素酶,以及近年来出现的几种低分子量荧光素酶,具有不同的酶催化特性及理化特征。它们应用于蛋白质片段互补与共振能量转移技术等各种生化检测方法,为观察蛋白质相互作用提供了更安全便捷的手段,拓宽了蛋白质相互作用检测技术的适用范围。本文综述了常用荧光素酶的特征和它们在各种蛋白质相互作用检测方法中使用的原理、策略及其适用性。
        Protein-protein interaction is involved in many molecular processes within a cell and is thus an important area of life science research. Chemiluminescence, especially bioluminescence which is a biological form of chemiluminescence, provides extremely sensitive detection signals and thus has many advantages in practical applications. Various luciferases, such as firefly luciferase, bacterial luciferase, Renilla luciferase and several low molecular weight luciferases that have emerged in recent years, have different catalytic properties and physicochemical characteristics. They are applied to various biochemical techniques including protein fragment complementation and resonance energy transfer, providing a safer and more convenient means for observing protein-protein interaction, and broadening the application scope of detection techniques for protein-protein interaction. This review summarizes the characteristics of commonly used luciferases, their applicability, and the general principles and strategies for their use in protein-protein interaction assays.
引文
[1] Syafrizayanti, Betzen C, Hoheisel JD, et al. Methods for analyzing and quantifying protein-protein interaction [J]. Expert Rev Proteomics, 2014, 11(1): 107-120
    [2] Campbell AK. Chemiluminescence: Principles and Applications in Biology and Medicine [M]. Ellis Horwood, 1988
    [3] de Wet JR, Wood KV, DeLuca M, et al. Firefly luciferase gene: structure and expression in mammalian cells [J]. Mol Cell Biol, 1987, 7(2): 725-737
    [4] Scott D, Dikici E, Ensor M, et al. Bioluminescence and its impact on bioanalysis [J]. Annu Rev Anal Chem (Palo Alto Calif), 2011, 4: 297-319
    [5] Fraga H. Firefly luminescence: a historical perspective and recent developments [J]. Photochem Photobiol Sci, 2008, 7(2): 146-158
    [6] de Wet JR, Wood KV, Helinski DR, et al. Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli [J]. Proc Natl Acad Sci U S A, 1985, 82(23): 7870-7873
    [7] Nakatsu T, Ichiyama S, Hiratake J, et al. Structural basis for the spectral difference in luciferase bioluminescence [J]. Nature, 2006, 440(7082): 372-376
    [8] Branchini BR, Southworth TL, Murtiashaw MH, et al. A mutagenesis study of the putative luciferin binding site residues of firefly luciferase [J]. Biochemistry, 2003, 42(35): 10429-10436
    [9] Wang Y, Akiyama H, Terakado K, et al. Impact of site-directed mutant luciferase on quantitative green and orange/red emission intensities in firefly bioluminescence [J]. Sci Rep, 2013, 3: 2490
    [10] Belas R, Mileham A, Cohn D, et al. Bacterial bioluminescence: isolation and expression of the luciferase genes from Vibrio harveyi [J]. Science, 1982, 218(4574): 791-793
    [11] Waidmann MS, Bleichrodt FS, Laslo T, et al. Bacterial luciferase reporters: the Swiss army knife of molecular biology [J]. Bioeng Bugs, 2011, 2(1): 8-16
    [12] Meighen EA. Molecular biology of bacterial bioluminescence [J]. Microbiol Rev, 1991, 55(1): 123-142
    [13] Li H, Sekine M, Seng S, et al. BRCA1 interacts with Smad3 and regulates Smad3-mediated TGF-beta signaling during oxidative stress responses [J]. PLoS One, 2009, 4(9): e7091
    [14] Cui B, Zhang L, Song Y, et al. Engineering an enhanced, thermostable, monomeric bacterial luciferase gene as a reporter in plant protoplasts [J]. PLoS One, 2014, 9(10): e107885
    [15] Matthews JC, Hori K, Cormier MJ. Purification and properties of Renilla reniformis luciferase [J]. Biochemistry, 1977, 16(1): 85-91
    [16] Liu J, Escher A. Improved assay sensitivity of an engineered secreted Renilla luciferase [J]. Gene, 1999, 237(1): 153-159
    [17] Loening AM, Fenn TD, Wu AM, et al. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output [J]. Protein Eng Des Sel, 2006, 19(9): 391-400
    [18] Rahnama S, Saffar B, Kahrani ZF, et al. Super RLuc8: a novel engineered Renilla luciferase with a red-shifted spectrum and stable light emission [J]. Enzyme Microb Technol, 2017, 96: 60-66
    [19] Verhaegent M, Christopoulos TK. Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization [J]. Anal Chem, 2002, 74(17): 4378-4385
    [20] Inouye S, Sahara Y. Identification of two catalytic domains in a luciferase secreted by the copepod Gaussia princeps [J]. Biochem Biophys Res Commun, 2008, 365(1): 96-101
    [21] Welsh JP, Patel KG, Manthiram K, et al. Multiply mutated Gaussia luciferases provide prolonged and intense bioluminescence [J]. Biochem Biophys Res Commun, 2009, 389(4): 563-568
    [22] Kim SB, Suzuki H, Sato M, et al. Superluminescent variants of marine luciferases for bioassays [J]. Anal Chem, 2011, 83(22): 8732-8740
    [23] Inouye S, Watanabe K, Nakamura H, et al. Secretional luciferase of the luminous shrimp Oplophorus gracilirostris: cDNA cloning of a novel imidazopyrazinone luciferase [J]. FEBS Lett, 2000, 481(1): 19-25
    [24] Hall MP, Unch J, Binkowski BF, et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate [J]. ACS Chem Biol, 2012, 7(11): 1848-1857
    [25] Baldwin TO, Berends T, Bunch TA, et al. Cloning of the luciferase structural genes from Vibrio harveyi and expression of bioluminescence in Escherichia coli [J]. Biochemistry, 1984, 23(16): 3663-3667
    [26] Borisova VV, Frank LA, Markova SV, et al. Recombinant Metridia luciferase isoforms: expression, refolding and applicability for in vitro assay [J]. Photochem Photobiol Sci, 2008, 7(9): 1025-1031
    [27] Kerppola TK. Visualization of molecular interactions using bimolecular fluorescence complementation analysis: characteristics of protein fragment complementation [J]. Chem Soc Rev, 2009, 38(10): 2876- 2886
    [28] Kim HK, Cho EJ, Jo S, et al. A split luciferase complementation assay for studying in vivo protein-protein interactions in filamentous ascomycetes [J]. Curr Genet, 2012, 58(3): 179-189
    [29] Li JF, Bush J, Xiong Y, et al. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation [J]. PLoS One, 2011, 6(11): e27364
    [30] Ohmuro-Matsuyama Y, Chung CI, Ueda H. Demonstration of protein-fragment complementation assay using purified firefly luciferase fragments [J]. BMC Biotechnol, 2013, 13: 31
    [31] Luker KE, Smith MC, Luker GD, et al. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals [J]. Proc Natl Acad Sci U S A, 2004, 101(33): 12288-12293
    [32] Chen H, Zou Y, Shang Y, et al. Firefly luciferase complementation imaging assay for protein-protein interactions in plants [J]. Plant Physiol, 2008, 146(2): 368-376
    [33] Lund CH, Bromley JR, Stenbaek A, et al. A reversible Renilla luciferase protein complementation assay for rapid identification of protein-protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus [J]. J Exp Bot, 2015, 66(1): 85-97
    [34] Deng Q, Wang D, Xiang X, et al. Application of a split luciferase complementation assay for the detection of viral protein-protein interactions [J]. J Virol Methods, 2011, 176(1-2): 108-111
    [35] Wang J, Guo W, Long C, et al. The split Renilla luciferase complementation assay is useful for identifying the interaction of Epstein-Barr virus protein kinase BGLF4 and a heat shock protein Hsp90 [J]. Acta Virol, 2016, 60(1): 62-70
    [36] Hatzios SK, Ringgaard S, Davis BM, et al. Studies of dynamic protein-protein interactions in bacteria using Renilla luciferase complementation are undermined by nonspecific enzyme inhibition [J]. PLoS One, 2012, 7(8): e43175
    [37] Luker KE, Mihalko LA, Schmidt BT, et al. In vivo imaging of ligand receptor binding with Gaussia luciferase complementation [J]. Nat Med, 2011, 18(1): 172-177
    [38] Remy I, Michnick SW. A highly sensitive protein-protein interaction assay based on Gaussia luciferase [J]. Nat Methods, 2006, 3(12): 977-979
    [39] Gilad Y, Shiloh R, Ber Y, et al. Discovering protein-protein interactions within the programmed cell death network using a protein-fragment complementation screen [J]. Cell Rep, 2014, 8(3): 909-921
    [40] Dixon AS, Schwinn MK, Hall MP, et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells [J]. ACS Chem Biol, 2016, 11(2): 400-408
    [41] Zhao J, Nelson TJ, Vu Q, et al. Self-assembling nanoLuc luciferase fragments as probes for protein aggregation in living cells [J]. ACS Chem Biol, 2016, 11(1): 132-138
    [42] Ohmuro-Matsuyama Y, Nakano K, Kimura A, et al. A protein-protein interaction assay based on the functional complementation of mutant firefly luciferases [J]. Anal Chem, 2013, 85(16): 7935-7940
    [43] Kurihara M, Ohmuro-Matsuyama Y, Ayabe K, et al. Ultra sensitive firefly luciferase-based protein- protein interaction assay (FlimPIA) attained by hinge region engineering and optimized reaction conditions [J]. Biotechnol J, 2016, 11(1): 91-99
    [44] Shrestha D, Jenei A, Nagy P, et al. Understanding FRET as a research tool for cellular studies [J]. Int J Mol Sci, 2015, 16(4): 6718-6756
    [45] Dragulescu-Andrasi A, Chan CT, De A, et al. Bioluminescence resonance energy transfer (BRET) imaging of protein-protein interactions within deep tissues of living subjects [J]. Proc Natl Acad Sci U S A, 2011, 108(29): 12060-12065
    [46] Deriziotis P, Graham SA, Estruch SB, et al. Investigating protein-protein interactions in live cells using bioluminescence resonance energy transfer [J]. J Vis Exp, 2014 May 26, (87).doi:10.3791/51438
    [47] Brown NE, Blumer JB, Hepler JR. Bioluminescence resonance energy transfer to detect protein-protein interactions in live cells [J]. Methods Mol Biol, 2015, 1278: 457-465
    [48] Hubner GM, Larsen JN, Guerra B, et al. Evidence for aggregation of protein kinase CK2 in the cell: a novel strategy for studying CK2 holoenzyme interaction by BRET(2) [J]. Mol Cell Biochem, 2014, 397(1-2): 285-293
    [49] Kocan M, Dalrymple MB, Seeber RM, et al. Enhanced BRET technology for the monitoring of agonist-induced and agonist-independent interactions between GPCRs and beta-arrestins [J]. Front Endocrinol (Lausanne), 2011, 1: 12
    [50] Arai R, Nakagawa H, Kitayama A, et al. Detection of protein-protein interaction by bioluminescence resonance energy transfer from firefly luciferase to red fluorescent protein [J]. J Biosci Bioeng, 2002, 94(4): 362-364
    [51] Cui B, Wang Y, Song Y, et al. Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria [J]. MBio, 2014, 5(3): e01050-14
    [52] Stoddart LA, Johnstone EKM, Wheal AJ, et al. Application of BRET to monitor ligand binding to GPCRs [J]. Nat Methods, 2015, 12(7): 661-663
    [53] Machleidt T, Woodroofe CC, Schwinn MK, et al. NanoBRET--A novel BRET platform for the analysis of protein-protein interactions [J]. ACS Chem Biol, 2015, 10(8): 1797-1804
    [54] Ferro E, Trabalzini L. The yeast two-hybrid and related methods as powerful tools to study plant cell signalling [J]. Plant Mol Biol, 2013, 83(4-5): 287-301
    [55] Kumari S, Crim RL, Kulkarni A, et al. Development of a luciferase immunoprecipitation system assay to detect IgG antibodies against human respiratory syncytial virus nucleoprotein [J]. Clin Vaccine Immunol, 2014, 21(3): 383-390
    [56] Ustinova J, Zusinaite E, Utt M, et al. Development of a luciferase-based system for the detection of ZnT8 autoantibodies [J]. J Immunol Methods, 2014, 405(2): 67-73
    [57] Ling Y, Jiang P, Li N, et al. A luciferase immunoprecipitation assay for the detection of proinsulin/insulin autoantibodies [J]. Clin Biochem, 2018: 54: 51-55
    [58] Beck LH Jr, Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy [J]. N Engl J Med, 2009, 361(1): 11-21
    [59] Jia S, Peng J, Gao B, et al. Relative quantification of protein-protein interactions using a dual luciferase reporter pull-down assay system [J]. PLoS One, 2011, 6(10): e26414
    [60] Zhang L, Song G, Xu T, et al. A novel ultrasensitive bioluminescent receptor-binding assay of INSL3 through chemical conjugation with nanoluciferase [J]. Biochimie, 2013, 95(12): 2454-2459
    [61] He SX, Song G, Shi JP, et al. Nanoluciferase as a novel quantitative protein fusion tag: Application for overexpression and bioluminescent receptor-binding assays of human leukemia inhibitory factor [J]. Biochimie, 2014, 106: 140-148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700