泛素化连接酶调控顺铂药物敏感性的分子机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Molecular Mechanism of Ubiquitin Ligase Regulating Cisplatin Sensitivity
  • 作者:龚恋 ; 何东 ; 曹科 ; 胡一 ; 钟茗
  • 英文作者:GONG Lian;HE Dong;CAO Ke;HU Yi;ZHONG Ming;The Third Xiangya Hospital,Central South University;The Second People's Hospital of Hunan Province;
  • 关键词:恶性肿瘤 ; 顺铂 ; 药物敏感 ; 泛素化连接酶
  • 英文关键词:malignant tumors;;cisplatin;;drug sensitivity;;ubiquitin ligase
  • 中文刊名:ZHLU
  • 英文刊名:China Cancer
  • 机构:中南大学湘雅三医院;湖南省第二人民医院;
  • 出版日期:2019-01-05
  • 出版单位:中国肿瘤
  • 年:2019
  • 期:v.28
  • 基金:中南大学研究生科研创新项目(1053320171260);; 湖南省卫生计生委科研计划课题项目(C20180476)
  • 语种:中文;
  • 页:ZHLU201901006
  • 页数:4
  • CN:01
  • ISSN:11-2859/R
  • 分类号:49-52
摘要
顺铂广泛用于治疗多种恶性肿瘤,但在治疗过程中容易产生耐药。顺铂耐药被报道与蛋白泛素化密切相关,蛋白泛素化由3类酶即泛素活化酶(E1)、泛素结合酶(E2)和泛素化连接酶(E3)催化,其中E3在泛素化过程中可通过识别与调控底物表达来影响顺铂药物敏感性。该文通过对E3调控底物影响顺铂药物敏感性的分子机制进行综述,为恶性肿瘤的顺铂耐药逆转提供新思路。
        Cisplatin is widely used in the treatment of different types of malignancy,but drug-resistant is frequently occurs in the treatment course.Recently cisplatin resistance is reported to be closely related to protein ubiquitination,which is catalyzed by three kinds of enzymes,including ubiquitin activators(E1),ubiquitin binding enzymes(E2) and ubiquitin ligases(E3). E3 can affect the drug sensitivity of cisplatin by regulating and recognizing substrate in the ubiquitination process. The molecular mechanisms of ubiquitin ligases regulating substrates related to cisplatin resistance are summarized in this article.
引文
[1] Amable L. Cisplatin resistance and opportunities for precision medicine[J]. Pharmacol Res,2016,106:27-36.
    [2] Zacharioudakis E, Agarwal P, Bartoli A,et al. Chromatin regulates genome targeting with cisplatin[J]. Angew Chem Int Ed Engl,2017,56(23):6483-6487.
    [3] Matsuura K,Huang NJ,Cocce K,et al. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin[J]. Oncogene,201,36(12):1698-1706.
    [4] Mu觡oz-Fontela C,Mandinova A,Aaronson SA,et al. Emerging roles of p53 and other tumour-suppressor genes in immune regulation[J]. Nat Rev Immunol,2016,16(12):741-750.
    [5] Bykov VJN,Eriksson SE,Bianchi J,et al. Targeting mutant p53 for efficient cancer therapy[J]. Nat Rev Cancer,2018,18(2):89-102.
    [6] Cao P,Yang A,Wang R,et al. Germline duplication of sNORA18L5 increases risk for HBV-related hepatocellular carcinoma by altering localization of ribosomal proteins and decreasing levels of p53[J]. Gastroenterology,2018,155(2):542-556.
    [7] Walter RFH,Werner R,Wessolly M,et al. Inhibition of MDM2 via Nutlin-3A:a potential therapeutic approach for pleural mesotheliomas with MDM2-induced inactivation of wild-type p53[J]. J Oncol,2018,2018:1986982.
    [8] Qin X,Qiu F,Zou Z.TRIM25 is associated with cisplatin resistance in non-small-cell lung carcinoma A549 cell line via downregulation of 14-3-3σ[J]. Biochem Biophys Res Commun,2017,493(1):568-572.
    [9] Zhu J,Zhao C,Zhuang T,et al. Ring finger protein 31promotes p53 degradation in breast cancer cells[J]. Oncogene,2016,35(15):1955-1964.
    [10] Li Y,Ma C,Zhou T,et al. TRIM65 negatively regulates p53 through ubiquitination[J]. Biochem Biophys Res Commun,2016,473(1):278-282.
    [11] Kramer D,Sch觟n M,BayerlováM,et al. A pro-apoptotic function of iASPP by stabilizing p300 and CBP through inhibition of BRMS1 E3 ubiquitin ligase activity[J]. Cell Death Dis,2015,6:e1634.
    [12] Li Y,Ozaki T,Kikuchi H,et al. A novel HECT-type E3ubiquitin protein ligase NEDL1 enhances the p53-mediated apoptotic cell death in its catalytic activity-independent manner[J]. Oncogene,2008,27(26):3700-3709.
    [13] Chen SM, Lin TK, Tseng YY,et al. Targeting inhibitors of apoptosis proteins suppresses medulloblastoma cell proliferation via G2/M phase arrest and attenuated neddylation of p21[J]. Cancer Med,2018,7(8):3988-4003.
    [14] Yang YL,Hung MS,Wang Y,et al. Lung tumourigenesis in a conditional Cul4A transgenic mouse model[J]. J Pathol,2014,233(2):113-123.
    [15] da Silva GN, de Camargo EA, Sávio AL,et al. MRE11A and SKP2 genes are associated with the increased cytotoxicity induced by the synergistic effects of cisplatin and gemcitabine in bladder cancer cells[J]. Mol Biol Rep,2014,41(7):4613-4621.
    [16] Wan Q,Liu Z,Peng W,et al. BnRCH gene inhibits cell growth of Hela cells through increasing the G2 phase of cell cycle[J]. Hum Cell,2011,24(4):150-160.
    [17] LoRusso PM. Inhibition of the PI3K/AKT/mTOR pathway in solid tumors[J]. J Clin Oncol,2016,34(31):3803-3815.
    [18] HouédéN,Pourquier P. Targeting the genetic alterations of the PI3K-AKT-mTOR pathway:its potential use in the treatment of bladder cancers[J]. Pharmacol Ther,2015,145:1-18.
    [19] Song YH,Zhang CQ,Chen FF,et al. Upregulation of neural precursor cell expressed developmentally downregulated 4-1 is associated with poor prognosis and chemoresistance in lung adenocarcinoma[J]. Chin Med J(Engl),2018,131(1):16-24.
    [20] Liu Z,Wu Y,Tao Z,et al. E3 ubiquitin ligase Hakai regulates cell growth and invasion,and increases the chemosensitivity to cisplatin in non-small-cell lung cancer cells[J]. Int J Mol Med,2018,42(2):1145-1151.
    [21] Suryo Rahmanto A,Savov V,Brunner A,et al. FBW7 suppression leads to SOX9 stabilization and increased malignancy in medulloblastoma[J]. EMBO J,2016,35(20):2192-2212.
    [22] Kuang CM,Fu X,Hua YJ,et al. BST2 confers cisplatin resistance via NF-κB signaling in nasopharyngeal cancer[J]. Cell Death Dis,2017,8(6):e2874.
    [23] Fujita H,Aratani S,Fujii R,et al. Mitochondrial ubiquitin ligase activator of NF-κB regulates NF-κB signaling in cells subjected to ER stress[J]. Int J Mol Med,2016,37(6):1611-1618.
    [24] Li Y,Deng L,Zhao X,et al.Tripartite motif-containing 37(TRIM37)promotes the aggressiveness of non-small-cell lung cancer cells by activating the NF-κB pathway[J]. J Pathol,2018,246(3):366-378.
    [25] Wu G,Song L,Zhu J,et al. An ATM/TRIM37/NEMO axis counteracts genotoxicity by activating nuclear-to-cytoplasmic NF-κB signaling[J]. Cancer Res,2018,78(22):6399-6412.
    [26] Liu J,Lv L,Gong J,et al. Overexpression of F-box only protein 31 predicts poor prognosis and deregulates p38α-and JNK-mediated apoptosis in esophageal squamous cell carcinoma[J]. J Cancer,2018,142(1):145-155.
    [27] MacKay C,Carroll E,Ibrahim AFM,et al. E3 ubiquitin ligase HOIP attenuates apoptotic cell death induced by cisplatin[J]. Cancer Res,2014,74(8):2246-2257.
    [28] Mori A,Masuda K,Ohtsuka H,et al. FBXW7 modulates malignant potential and cisplatin-induced apoptosis in cholangiocarcinoma via NOTCH1 and MCL1[J]. Cancer Sci,2018,109(12):3883-3895.
    [29] Bradley A,Zheng H,Ziebarth A,et al. EDD enhances cell survival and cisplatin resistance and is a therapeutic target for epithelial ovarian cancer[J]. Carcinogenesis,2014,35(5):1100-1109.
    [30] Duhamel S,Goyette MA,Thibault MP,et al. The E3 ubiquitin ligase HectD1 suppresses EMT and metastasis by targeting the+TIP ACF7 for degradation[J].Cell Rep,2018,22(4):1016-1030.
    [31] Li Y,Chen X,Wang Z,et al. The HECTD3 E3 ubiquitin ligase suppresses cisplatin-induced apoptosis via stabilizing MALT1[J]. Neoplasia,2013,15(1):39-48.
    [32] Li Y,Wu X,Li L,et al. The E3 ligase HECTD3 promotes esophageal squamous cell carcinoma(ESCC)growth and cell survival through targeting and inhibiting caspase-9 activation[J]. Cancer Lett,2017,404:44-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700