包膜黏弹特性及声驱动参数对相互作用微泡动力学行为的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The impacts of encapsulating shell properties and acoustic driving parameters on the dynamic behavior of interacting microbubbles
  • 作者:蔡晨亮 ; 屠娟 ; 郭霞生 ; 章东
  • 英文作者:CAI Chenliang;TU Juan;GUO Xiasheng;ZHANG Dong;Institute of Acoustic, School of Physics, Nanjing University;The State Key Laboratory of Acoustics, Chinese Academy of Science;
  • 中文刊名:XIBA
  • 英文刊名:Acta Acustica
  • 机构:南京大学声学研究所物理学院;中国科学院声学国家重点实验室;
  • 出版日期:2019-07-15
  • 出版单位:声学学报
  • 年:2019
  • 期:v.44
  • 基金:国家自然科学基金项目(81627802,11474161,81527803,81420108018,11774166,11474001,11774168,11674173);; 江苏省青蓝工程项目资助
  • 语种:中文;
  • 页:XIBA201904041
  • 页数:8
  • CN:04
  • ISSN:11-2065/O4
  • 分类号:378-385
摘要
关于多气泡相互作用的理论研究对于深入理解超声造影剂在医疗领域中的应用机理具有重要意义。本工作建立了一个2维轴对称有限元模型来研究流体环境中超声造影剂双气泡相互作用,讨论了驱动超声频率和气泡尺寸对气泡之间吸引和排斥趋势的影响,得到了气泡半径与气泡之间距离随时间变化的曲线,以及气泡周围流体速度场的细节,并且研究了气泡包膜参数(即表面张力系数和粘度系数)对气泡相互作用的影响.结果表明,相互作用中的气泡对整体的相对运动趋势由驱动频率和共振频率之间的关系决定;在超声参数固定时,气泡包膜的粘弹特性可用来调控气泡间相互作用强度。结果对实验中观察到的气泡聚集现象进行了合理解释,并为超声造影剂在医疗实践中的应用提供了基础理论支撑.
        Theoretical studies on the dynamic interactions between multi-bubbles is a key topic for better understanding the physical mechanisms underlying clinical applications of Ultrasound Contrast Agents(UCAs).In the present work,a2-D axisymmetric Finite Element Model(FEM)was developed to investigate the bubble-bubble interactions for UCAs in an infinite fluidic environment.The impacts of acoustic driving parameters and the bubble size on the bubble interaction tendency were discussed,as well as the influences of bubble shell mechanical parameters.In addition,the temporal evolution of the bubbles' radii,the distance between bubbles' center,and the distribution of the velocity field in the surrounding fluid were also investigated based on FEM simulations.The results indicated that,for the interacting bubbles,the overall translational tendency should be dominated by the relationship between the driving frequency and their resonance frequencies.For constant acoustic driving parameters,the bubble-bubble interactions could be regulated by adjusting the shell visco-elasticity coefficients of the bubbles.The current work should be beneficial for in-depth understanding of the theoretical fundamentals behind bubble-bubble interactions,which plays an important role in the controlling and optimization of UCA applications.
引文
1 Zhang D,Gong Y,Gong X et al.Enhancement of subharmonic emission from encapsulated microbubbles by using a chirp excitation technique.Phys.Med.Biol.,2007;52(18):5531-5544
    2 Tu J,Guan J F,Matula T J et al.Real-time measurements and modelling on dynamic behaviour of SonoVue bubbles based on light scattering technology.Chin.Phys.Lett.,2008; 25(1):172-175
    3 Ferrara K,Pollard R,Borden M.Ultrasound microbubble contrast agents:fundamentals and application to gene and drug delivery.Annu.Rev.Biomed.Eng.,2007; 9:415—447
    4 Qin S,Caskey C F,Ferrara K W.Ultrasound constrast microbubbles in imaging and therapy:physical principles and engineering.Phys.Med.Biol.,2009; 54(6):R27—R57
    5 Zhou Y F.High intensity focused ultrasound in clinical tumor ablation.World J.Clin.Oncol.,2011; 2(1):8—27
    6 Cai X W,Yang F,Gu N.Applications of magnetic microbubbles for theranostics.Theranostics,2012; 2(1):103-112
    7 Lee J,Min H S,You D G et al.Theranostic gas-generating nanoparticles for targeted ultrasound imaging and treatment of neuroblastoma.J.Controlled Release,2016; 223:197-206
    8 Zhou Y F,Gao X W.Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound(pHIFU).Phys.Med,Biol.,2016; 61(18):6651—6667
    9 Doinikov A A.Translational motion of two interacting bubbles in a strong acoustic field.Phys.Rev.E,2011; 64(2):026301—026305
    10 Chen C,Gu Y,Tu J et al.Microbubble oscillating in a microvessel filled with viscous fluid:A finite element modeling study.Ultrasonics,2016; 66:54—64
    11焦俊杰,何勇,何源,潘绪超,王传婷.超声场中气泡融合的影响因素分析.声学学报,2016; 41(6):851-856
    12马艳,林书玉,徐洁.声场中空化气泡的耦合振动及形状不稳定性的研究.物理学报,2018; 67(3):034301
    13王成会,莫润阳,胡静,陈时.球状泡群内气泡的耦合振动.物理学报,2015; 64(23):234301
    14 Guo X S,Li Q,Zhang Z et al.Investigation on the inertial cavitation threshold and shell properties of commercialized ultrasound contrast agent microbubbles.J.Acoust.Soc.Am.,2013; 134(2):1622-1631
    15 Wang L,Tu J,Guo X S et al.Microstreaming velocity field and shear stress created by an oscillating encapsulated microbubble near a cell membrane.Chinese Physics B,2014;23(12):270—276
    16 Doinikov A A.Viscous effects on the interaction force between two small gas bubbles in a weak acoustic field.J.Aco-ust.Soc.Am.,2002; 111(4):1602—1609
    17 Chatterjee D,Sarkar K.A.Newtonian rheological model for the interface of microbubble contrast agent.Ultrasound Med.Biol.,2003; 29(12):1749—1757
    18 Fuster D,Conoir J M,Colonius T.Effect of direct bubblebubble interactions on linear-wave propagation in bubbly liquids.Phys.Rev.E Stat.Nonlin.Soft Matter Phys.,2014;90(6):063010
    19 Cui B,Ni B,Wu Q.Bubble-bubble interaction effects on dynamics of multiple bubbles in a vortical flow field.Adv.Mech.Eng.,2016; 8(2):1-12
    20 Tu J,Guan J,Qiu Y et al. Estimating the shell parameters of SonoVue microbubbles using light scattering.J.Acoust.Soc.Am.,2009; 126(6):2954-2962
    21 Dayton P A,Morgan K E,Klibanov A L et al.A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents.IEEE Trans.Ultrason.Ferroelectr.Freq.Control,1997; 44(6):1264—1277
    22 Rychak J J,Klibanov A L,Hossack J A.Acoustic radiation force enhances targeted delivery of ultrasound contrast microbubbles:in vitro verification.IEEE Trans.Ultrason.Ferroelectr.Freq.Control,2005; 52(3):421—433
    23王成会,林书玉.超声场中气泡的耦合运动.声学学报,2011:36(3):325-331
    24 Pelekasis N A,Tsamopoulos J.Bjerknes forces between two bubbles.Part 2.Response to an oscillatory pressure field.J.Fluid Mech.,1993; 254:501-527
    25王德鑫,那仁满都拉.耦合双泡声空化特性的理论研究.物理学报,2018; 67(3):037802
    26 Zabolotskaya E A.Interaction of gas bubbles in a sound field.Soviet Physics Acoustics,1984; 30(5):365-368
    27 Oguz H N,Prosperetti A.Generalization of the impulse and virial theorems with an application to bubble oscillations.J.Fluid Mech.,2006; 218(218):143—162
    28 Masato I.Alternative interpretation of the sign reversal of secondary Bjerknes force acting between two pulsating gas bubbles.Phys.Rev.E,2003; 67(5):056617-056623
    29 Sadighi-Bonabi R,Rezaee N,Ebrahimi H et al. Interaction of two oscillating sonoluminescence bubbles in sulfuric acid.Phys.Rev.E,2010;82(1):016316-016322

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700