藏东南泥石流区土壤理化性质与可蚀性K值影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on the Influence of Soil Physical and Chemical Properties and Erodibility K Value in Debris Flow Area in Southeastern Tibet
  • 作者:姚甜甜 ; 张鹏 ; 万丹 ; 喻武 ; 张博
  • 英文作者:YAO Tian-tian;ZHANG Peng;WAN Dan;YU Wu;ZHANG Bo;College of Resources and Environment/Research Center for Alpine and Soil Conservation,Tibet Agriculture and Animal Husbandry College;
  • 关键词:泥石流 ; 土壤理化性质 ; 可蚀性K值
  • 英文关键词:debris-flow;;soil physical and chemical properties;;erodibility K value
  • 中文刊名:SYNY
  • 英文刊名:Journal of Shenyang Agricultural University
  • 机构:西藏农牧学院资源与环境学院/高寒水土保持研究中心;
  • 出版日期:2019-04-15
  • 出版单位:沈阳农业大学学报
  • 年:2019
  • 期:v.50;No.199
  • 基金:国家自然科学基金项目(41661061);; 西藏农牧学院-中国农业大学联合基金项目(2017-NY-04)
  • 语种:中文;
  • 页:SYNY201902018
  • 页数:5
  • CN:02
  • ISSN:21-1134/S
  • 分类号:123-127
摘要
泥石流是藏东南最典型的水土流失类型,也是一种频发的地质灾害。通过对扎木弄沟泥石流发生前和发生后的土壤理化性质和可蚀性进行试验对比,探讨土壤侵蚀潜在发生危险性,以期为区域泥石流防治提供科学理论依据。采取空间代替时间的方法,选取研究区典型未发生泥石流和泥石流后的样地,采取0~20cm土壤,测定团聚体、结构破坏率、基本物理指标、颗粒组成及有机质,用EPIC模型计算可蚀性K值。结果表明:与泥石流发生前对比,泥石流发生后的土壤>0.25mm非水稳性团聚体和水稳性团聚体相比分别降低4.14%和31.57%,结构破坏率相比增加38.16%,有机质含量由253.27g·kg-1降至34.29g·kg-1;泥石流使土壤容重增加,孔隙度和含水率降低,土壤可蚀性K值呈减小趋势;土壤可蚀性K值与黏粒、粉粒呈显著正相关,与砂粒呈显著负相关关系,与有机质含量、团聚体均呈正相关,与容重呈负相关,而与孔隙度呈正相关。泥石流的发生使土壤粗骨化,有机质含量明显下降,不利于团粒结构的形成和稳定,从而会在一定程度上阻碍植被的恢复,进而造成土壤侵蚀发生的潜在危险性增强。
        Debris flow is the most typical type of soil erosion in southeastern Tibet, and it is also a frequent geological disaster.In order to lay the foundation for the prevention and control of soil erosion and debris flow,We compared the physical and chemical properties and erodibility of soil before and after debris flow in Zhamunong Gully, Linzhi, Tibet,and explored the potential danger of soil erosion. This study took space instead of time,we selected the typical plots with no debris flow and debris flow and took the soil samples of 0-20 cm to measure aggregates,structural failure rate,basic physical indexes,particle composition and organic matter,and calculated the erodibility K value by EPIC model. The results show that: Compared with that before debris flow, >0.25 mm non-water-stable aggregates and water-stable aggregates after debris flow decreased by 4.14% and31.57% respectively, the structural damage rate increased by 38.16%, and the organic matter content decreased from 253.27 g·kg-1 to 34.29 g·kg-1 after debris flow; The debris flow increased the soil bulk density, the porosity and water content decreased, and the soil erodibility K value decreased. The K value in soil erosion was positively correlated with clay and powder, and negatively correlated with sand. It was positively correlated with organic matter content and aggregate, negatively correlated with bulk density, and positively correlated with porosity.The occurrence of debris flow makes the soil coarse and ossified, and the content of organic matter decreases obviously, which is not conducive to the formation and stability of the aggregate structure,and will hinder the restoration of vegetation to a certain extent, and thus increases the potential danger of soil erosion.
引文
[1]李俊,陈宁生,邓明枫.西藏林芝扎木弄沟泥石流规模变化趋势研究[J].人民长江2017,48(23):61-65.
    [2]魏慧,赵文武,王晶.土壤可蚀性研究述评[J].应用生态学报,2017,28(8):2749-2759.
    [3]何淑勤,宫渊波,郑子成,等.山地森林-干旱河谷交错带表层土壤侵蚀率与土壤物理性质的关系[J].资源科学,2013,35(4):824-830.
    [4]李晓佳,海春兴,刘广通.阴山北麓不同用地方式下春季土壤可蚀性研究[J].干旱区地理,2007(6):926-932.
    [5]宋春风,陶和平,刘斌涛,等.长江上游地区土壤可蚀性空间分异特征[J].长江流域资源与环境,2012,21(9):1123-1130.
    [6]陶俊,何丙辉,徐小军,等.不同复合种植模式对土壤可蚀性K值与侵蚀量的影响研究[J].水土保持通报,2013,33(3):38-43.
    [7] KIANI F,GHEZELSETLO A.Evaluation of soil erodibility factor(k)for loess derived landforms of Kechikwatershed in Golestan Province, North of Iran[J].Journal of MountainScience,2016,13(11):2028-2035.
    [8]荆莎莎,张荣华,张庆红,等.沂蒙山区典型县土壤可蚀性K值空间变异研究[J].土壤通报,2017,48(2):278-284.
    [9]吴媛媛,杨明义,张风宝,等.添加生物炭对黄绵土耕层土壤可蚀性的影响[J].土壤学报,2016,53(1):81-92.
    [10]朱成刚,李卫红,李大龙,等.伊犁河谷土壤理化性质及可蚀性特征分析[J].资源科学,2016,38(7):1212-1221.
    [11]翟伟峰,许林书.东北典型黑土区土壤可蚀性K值研究[J].土壤通报,2011,42(5):1209-1213.
    [12]赵吉坤,王丹.土壤受泥石流侵蚀强度模型及试验研究[J].土壤通报,2014,45(6):1334-1342.
    [13]廖超林,何毓蓉,徐佩.泥石流源地土壤团聚体抗蚀特征研究———以蒋家沟为例[J].地球与环境,2005(4):69-73.
    [14]刘国权,鲁修元,李扬.西藏扎木弄沟山体滑坡和泥石流成因分析[J].东北水利水电,2001(6):49-50.
    [15] WILLIAMS J R,GENARD K G,LI Z K.New appraisal method of erosion affects soil productivity[J].Scientific and Technical Information of Soil and Water Conservation,1984(4):26-30
    [16]冷延慧.长期施肥对棕壤、黑土团聚体组成及其稳定性的影响[D].沈阳:沈阳农业大学,2008.
    [17]刘旦旦.广义土壤结构与土壤抗侵蚀性耦合关系研究[D].杨凌:西北农林科技大学,2013.
    [18]黄晓强,赵云杰,信忠保,等.北京山区典型土地利用方式对土壤理化性质及可蚀性的影响[J].水土保持研究,2015,22(1):5-10.
    [19]王小云.土壤团聚体与土壤侵蚀关系研究进展[J].安徽农业科学,2016,44(23):106-108.
    [20]吴小波,王震洪,何建敏,等.雷公山4种森林类型的土壤可蚀性K值及影响因素[J].贵州农业科学,2014,42(7):64-67+72.
    [21]杨帆,张洪江,程金花,等.北京市延庆县不同土地利用方式下的土壤可蚀性研究[J].水土保持通报,2013,33(6):19-23.
    [22]闫峰陵,史志华,蔡崇法,等.红壤表土团聚体稳定性对坡面侵蚀的影响[J].土壤学报,2007(4):577-583.
    [23]卢金伟.土壤团聚体水稳定性及其与土壤可蚀性之间关系研究[D].杨凌:西北农林科技大学,2002.
    [24]李旭,王海燕,杨晓娟,等.东北近天然林土壤可蚀性K值研究[J].水土保持通报,2014,34(4):5-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700