用户名: 密码: 验证码:
弯矩作用下盾构管片环向接头的力学模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanical Model of Girth Joint of Shield Segment under Bending Moment
  • 作者:杨成 ; 赖远明 ; 王旭 ; 马勤国 ; 杨志团
  • 英文作者:YANG Cheng;LAI Yuanming;WANG Xu;MA Qinguo;YANG Zhituan;School of Civil Engineering,Lanzhou Jiaotong University;Northwest Institute of Eco-Environmental Resources,Chinese Academy of Sciences;School of Civil Engineering and Transportation,South China University of Technology;Lanzhou City Rail Traffic Co.,Ltd;
  • 关键词:弯矩 ; 盾构管片 ; 环向接头 ; 解析解
  • 英文关键词:bending moment;;shield segment;;girth joint;;analytical solution
  • 中文刊名:TDXB
  • 英文刊名:Journal of the China Railway Society
  • 机构:兰州交通大学土木工程学院;中国科学院西北生态环境资源研究院;华南理工大学土木与交通学院;兰州市轨道交通有限公司;
  • 出版日期:2019-03-15
  • 出版单位:铁道学报
  • 年:2019
  • 期:v.41;No.257
  • 基金:国家自然科学基金(41662017、51868038、41562014)
  • 语种:中文;
  • 页:TDXB201903020
  • 页数:6
  • CN:03
  • ISSN:11-2104/U
  • 分类号:147-152
摘要
以兰州地铁1号线为工程背景,通过模型假设,对盾构管片环向受力进行分析,提出接头刚度的定义。通过管片各个阶段的受力特征,建立接头的力学解析模型,推导得到不同受力特征下管片环向接头的力学表达式;然后对管片接头用ANSYS建立有限元模型,在管片轴力与弯矩分别为(0 kN,±50 kN·m)、(200 kN,±100 kN·m)、(400 N,±150 kN·m)、(800 kN,±200 kN·m)、(1 000 kN,±250 kN·m)的情况下,得到弯矩与接头转角的关系,在接头轴力一定的情况下,管片接头转角随弯矩的增大而逐渐增大,但是M-θ曲线的切线斜率随着弯矩的增大而逐渐减小,在轴力超过600 kN时趋于稳定,M-θ曲线斜率为一定值,计算可以简化为直线,相同的计算条件下,解析解与有限元结果呈现相同的变化规律,在实际应用中可以用解析解进行计算得到接头刚度,进而进行管片的接头受力计算。
        Based on the engineering background of Lanzhou Metro Line 1, the circumferential force of shield segment was analyzed through model assumption, and the definition of joint stiffness was put forward. The mechanical analytical model of the joint was established through the stress characteristics at various stages of the segments, and the mechanics of the girth joint under different stress characteristics were derived. Then the finite element model was established by using ANSYS for the segment joint. The relationship between the bending moment and the joint angle was obtained when the axial force and the bending moment were(0 kN,±50 kN·m),(200 kN,±100 kN·m),(400 kN,±150 kN·m),(800 kN,±200 kN·m),(1 000 kN,±250 kN·m) respectively. When the joint axial force was constant, the joint angle of the segments increased with the increase of bending moment. However, the tangent slope of M-θ curve decreased with the increase of bending moment and tended to be stable when the axial force exceeded 600 kN. With the slope of M-θ curve being a certain value, the calculation can be simplified as a straight line. Under the same calculation conditions, the mechanical analytical model and the finite element model show a similar change rule. In the practical application, the joint stiffness can be calculated by the analytical solution, and then the joint stress of the segment can be calculated.
引文
[1] 吴全立,王梦恕,董新平.盾构管片接头非线性转动刚度研究[J].土木工程学报,2014,47(4):109-114.WU Quanli,WANG Mengshu,DONG Xinping.Study on Nonlinear Rotational Stiffness of Shield Segment Joint[J].China Civil Engineering Journal,2014,47(4):109-114.
    [2] 夏才初,曾格华,卞跃威.盾构隧道管片环纵向接头抗弯刚度值的不动点迭代确定方法[J].岩石力学与工程学报,2014,33(5): 901-912.XIA Caichu,ZENG Gehua,BIAN Yuewei.Method for Determining Bending Stiffness of Shield Tunnel Segment Rings Longitudinal Joint Based on Fix-point Iteration[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(5):901-912.
    [3] 陈俊生,莫海鸿.盾构隧道管片接头抗弯刚度的三维数值计算[J].铁道学报,2009,31(4):87-91.CHEN Junsheng,MO Haihong.Three-dimensional FEM Analysis on Flexural Rigidity of Segment Joints in Shield Tunnel[J].Journal of the China Railway Society,2009,31(4):87-91.
    [4] 周海鹰.盾构隧道衬砌管片结构的力学性能试验及理论研究[D].大连:大连理工大学,2011.
    [5] 曾东洋,何川.地铁盾构隧道管片接头刚度影响因素研究[J].铁道学报,2005,27(4):90-95.ZENG Dongyang,HE Chuan.Study on Factors Influential in Metro Shield Tunnel Segment Joint Bending Stiffness[J].Journal of the China Railway Society,2005,27(4):90-95.
    [6] 朱伟,钟小春,秦建设.盾构衬砌管片接头力学分析及双直线刚度模型研究[J].岩土力学,2006,27(12):2154-2158.ZHU Wei,ZHONG Xiaochun,QIN Jianshe.Mechanical Analysis of Segment Joint of Shield Tunnel and Research on Bilinear Joint Stiffness Model[J].Rock and Soil Mechanics,2006,27(12):2154-2158.
    [7] CLIMENT M, ORIOL A.Experimental and Analytical Study of the Structural Response of Segmental Tunnel Linings Based on an in Situ Loading Test.Part 1:Test Configuration and Execution[J].Tunnelling and Underground Space Technology,2011,26(6) :764-777.
    [8] 刘鹏,丁文其,杨波.沉管隧道接头刚度模型研究[J].岩土工程学报,2013,35(S2):133-139.LIU Peng,DING Wenqi,YANG Bo.Model for Stiffness of Joints of Immersed Tube Tunnel[J].Chinese Journal of Geotechnical Engineering,2013,35(S2):133-139.
    [9] 禹海涛,袁勇,刘洪洲,等.沉管隧道接头力学模型及刚度解析表达式[J].工程力学,2014,31(6):145-150.YU Haitao,YUAN Yong,LIU Hongzhou,et al.Mechanical Model and Analytical Solution for Stiffness in the Joints of an Immersed-tube Tunnel[J].Engineering Mechanics,2014,31(6):145-150.
    [10] ORIOL A, CLIMENT M. Experimental and Analytical Study of the Structural Response of Segmental Tunnel Linings Based on an in Situ Loading Test. Part 2:Numerical Simulation[J].Tunnelling and Underground Space Technology,2011,26(6):778-788.
    [11] 张鹏.地铁盾构隧道管片接头的理论分析及应用研究[D].北京:北京交通大学,2011.
    [12] 任玲.铁路盾构隧道管片结构接缝力学行为研究[D].成都:西南交通大学,2010.
    [13] 蔡恒.盾构法与浅埋暗挖法结合修建地铁车站管片结构接头连接研究[D].北京:北京交通大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700