新型气液逆流撞击洗涤喷嘴的优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of new type of gas-liquid countercurrent impinging scrubber nozzle
  • 作者:郝思佳 ; 满长卓 ; 许峻 ; 范怡平
  • 英文作者:Sijia HAO;Changzhuo MAN;Jun XU;Yiping FAN;State Key Laboratory of Heavy Oil, China University of Petroleum(Beijing);
  • 关键词:气液传质 ; 喷嘴 ; 优化 ; 操作参数
  • 英文关键词:gas-liquid mass transfer;;nozzle;;optimization;;operating parameters
  • 中文刊名:HGYJ
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:中国石油大学(北京)化工过程机械系;
  • 出版日期:2018-09-17 09:06
  • 出版单位:过程工程学报
  • 年:2019
  • 期:v.19
  • 基金:国家自然科学基金资助项目(编号:21476254)
  • 语种:中文;
  • 页:HGYJ201902005
  • 页数:9
  • CN:02
  • ISSN:11-4541/TQ
  • 分类号:39-47
摘要
针对一种新型气液逆流撞击式洗涤喷嘴,通过冷模实验,采用溶氧法考察了不同结构喷嘴的气液两相传质性能。结合解析率及流型变化,考察了喷嘴出口直径、切向进液口倾角、旋流室收敛段锥角、切向进液口直径、喷口长度5个参数对传质的影响,确定了优选喷嘴的结构尺寸,分析了该优选喷嘴在不同操作条件下(气速、表观液气比和轴切比)的传质效果。结果表明,优选喷嘴在轴切比为0.4~0.6且气速较高时传质效果较好。
        A new type of gas-liquid countercurrent impinging scrubber nozzle was put forward. By using the dissolved oxygen technique, the characteristics of the gas-liquid two-phase mass transfer with different structures of scrubber nozzles were investigated through cold model experiment. Combining the measured desorption rates with the observed flow patterns variation, the effects of five structural parameters including the nozzle outlet diameter, the tangential inlet angle, the conical swirl chamber cone angle, the tangential inlet diameter and the spout length on the mass transfer were analyzed. Thus the optimalstructural dimensions were given. The features of the mass transfer of the optimal nozzle under different operating conditions including the gas velocity, the superficial liquid-gas volume flow rate ratio, and the axial-tangential volume flow rate ratio were investigated further. The nozzle with structure of horizontal angle of the tangential inlet, small outlet diameter(with high orifice speed), and small conical angle of the convergent section of the swirl chamber can gain high mass transfer efficiency. For industrial applications, large size scrubbers should provide as much tangential momentum as possible to cover the entire cross section and increase the gas-liquid contact area, such as choose the angle 0? and 90?, tangential inlet angle and conical swirl chamber cone angle respectively. The results showed that the desirable effect of mass transfer could be obtained then the axial-tangential volume flow rate ratio was 0.4~0.6, especially in a high gas velocity condition. Similarly, there was a better mass transfer area with the change of superficial liquid-gas volume flow rate ratio. In addition, high desorption rates can be achieved with a very small liquid-gas volume flow rate ratio under the condition of high gas velocity. It can also be concluded that this type of washing nozzle with higher operating elasticity can adapt to different conditions of liquid-gas volume flow ratio by adjusting the axial-tangential volume flow rate ratio.
引文
[1]邵国兴.带混合元件的动力波洗涤器[J].硫酸工业,1999,(2):7-9.Shao G X.Dynawave scrubber with mixing elements[J].Sulfuric Acid Industry,1999,(2):7-9.
    [2]Burnham R C.Gas-liquid mixing nozzle:US4456181[P].1984-06-26.
    [3]Steven F M,Linda W M,Kanson X.炼油厂FCC尾气的脱硫除尘新技术-动力波逆喷洗涤塔[J].炼油技术与工程,2005,35(2):25-29.Steven F M,Linda W M,Kanson X.A new desulfurization and dust removal technology for FCC off-gas in refinery-dynawave countercurrent scrubber[J].Petroleum Refinery Engineering,2005,35(2):25-29.
    [4]郭盛,方跃法.一种射流雾化可调双功能喷头:CN201079753[P].2007-07-16.Guo S,Fang Y F.A type of jet atomization adjustable dual function nozzle:CN201079753[P].2007-07-16.
    [5]李仁刚,管一明,周启宏,等.湿式脱硫高效喷嘴:CN2522156[P].2001-12-25.Li R G,Guan Y M,Zhou Q H,et al.Wet desulfurization high-efficiency nozzle:CN2522156[P].2001-12-25.
    [6]范怡平,陈昇,卢春喜.一种逆喷式湿法烟气洗涤喷嘴:CN202983935U[P].2012-12-14.Fan Y P,Chen S,Lu C X.A type of countercurrent wet flue gas washing nozzle:CN202983935U[P].2012-12-14.
    [7]Xue J,Jog M A,Jeng S M,et al.Influence of geometry on the performance of simplex nozzles under constant pressure drop[C]//15th Annual Conference on Liquid Atomization and Spray Systems.Madison:ILASS Americas,2002:1-5.
    [8]Halder M R,Dash S K,Som S K.Initiation of air core in a simlpex nozzle and the effects of operating and geometrical parameters on its shape and size[J].Experimental Thermal&Fluid Science,2002,26(8):871-878.
    [9]Dash S K,Halder M R,Peric M,et al.Formation of air core in nozzles with tangential entry[J].Journal of Fluids Engineering,2002,123(4):829-835.
    [10]葛宇.新型逆喷式气液洗涤器的研究[D].北京:中国石油大学(北京),2012:59.Ge Y.Research on a new type of countercurrent gas-liquid scrubber[D].Beijing:China Petroleum University(Beijing),2012:59.
    [11]陈昇,范怡平,卢春喜.新型逆喷式洗涤喷嘴气液两相传质特性研究[J].高校化学工程学报,2013,27(6):937-944.Chen S,Fan Y P,Lu C X.Study on gas-liquid two-phase mass transfer characteristics of a new type of countercurrent washing nozzle[J].Journal of Chemical Engineering of Chinese Universities,2013,27(6):937-944.
    [12]李光晓.新型高效气液洗涤喷嘴流动特性的研究[D].北京:中国石油大学(北京),2015:82.Li G X.Research on the flow characteristics of a new type of high-efficiency gas-liquid washing nozzle[D].Beijing:China Petroleum University(Beijing),2015:82.
    [13]李萌,秦迪,范怡平,等.气液逆流洗涤器内两相流场的实验研究与数值模拟[J].过程工程学报,2017,17(4):689-696.Li M,Qin D,Fan Y P,et al.Experimental study and numerical simulation of two-phase flow field in gas-liquid countercurrent scrubber[J].The Chinese Journal of Process Engineering,2017,17(4):689-696.
    [14]李光晓,王钊,范怡平,等.气液两相逆流-错流撞击洗涤器内两相流动与传质特性[J].过程工程学报,2015,15(2):198-203.Li G X,Wang Z,Fan Y P,et al.Two-phase flow and mass transfer characteristics in a countercurrent-cross flow impacted scrubber with gas-liquid two phases[J].The Chinese Journal of Process Engineering,2015,15(2):198-203.
    [15]李秋萍,邵国兴,程建伟.湿式动力波洗涤器的工业应用[J].化工装备技术,2006,27(4):17-20.Li Q P,Shao G X,Cheng J W.Industrial application of wet dynawave scrubber[J].Chemical Equipment Technology,2006,27(4):17-20.
    [16]杨立军,葛明和,张向阳,等.喷口长度对离心喷嘴雾化特性的影响[J].推进技术,2005,26(3):209-214.Yang L J,Ge M H,Zhang X Y,et al.Effect of spout length on atomization characteristics of centrifugal nozzle[J].Propulsion Technology,2005,26(3):209-214.
    [17]马飞,张文明.水射流扩孔喷嘴内部流场的数值模拟[J].北京科技大学学报,2006,28(6):576-580.Ma F,Zhang W M.Numerical simulation of internal flow field in water jet reaming nozzle[J].Journal of University of Science and Technology Beijing,2006,28(6):576-580.
    [18]侯凌云,侯晓春.喷嘴技术手册[M].北京:中国石化出版社,2004:345.Hou L Y,Hou X C.Nozzle technical manual[M].Beijing:China Petrochemical Press,2004:345.
    [19]邱庆刚,贾丹丹,朱晓静,等.结构参数对离心喷嘴出口液膜厚度的影响[J].江苏大学学报(自然科学版),2015,36(3):271-275.Qiu Q G,Jia D D,Zhu X J,et al.Effect of structural parameters on liquid film thickness at the outlet of centrifugal nozzle[J].Journal of Jiangsu University(Natural Science Edition),2015,36(3):271-275.
    [20]刘昌波,雷凡培,周立新.两股湍流射流撞击雾化过程的数值研究[J].推进技术,2014,35(12):1669-1678.Liu C B,Lei F P,Zhou L X.Numerical study on the impacted atomization process of two turbulent jets[J].Propulsion Technology,2014,35(12):1669-1678.
    [21]姚云.喷射器内气液流动与混合性能的研究[D].青岛:青岛科技大学,2009:149.Yao Y.Research on gas-liquid flow and mixing performances in ejector[D].Qingdao:Qingdao University of Science&Technology,2009:149.
    [22]邱庆刚,刘丽娜.喷嘴结构对流场性能影响的研究[J].石油化工高等学校学报,2011,24(1):68-72.Qiu Q G,Liu L N.Research on effect of nozzle structure on performance of flow field[J].Journal of Petrochemical Universities,2011,24(1):68-72.
    [23]满长卓.气液逆流洗涤器内流动-传质特性及放大效应的研究[D].北京:中国石油大学(北京),2018:113.Man C Z.Flow and mass transfer characteristics and scale-up effect in a countercurrent cross-flow scrubber[D].Beijing:China Petroleum University(Beijing),2018:113.
    [24]廖婧.新型旋转泡沫洗涤器的流体力学和传质特性研究[D].湘潭:湘潭大学,2016:76.Liao J.Research on hydrodynamics and mass transfer characteristics of a new type of rotating foam scrubber[D].Xiangtan:Xiangtan University,2016:76.
    [25]占旺兵,李秋萍,程建伟,等.动力波洗涤器中碱液吸收低浓CO2的传质特性[J].化学工程,2012,40(2):33-37.Zhan W B,Li Q P,Cheng J W,et al.Mass transfer characteristics of alkali solution absorption of low concentration CO2 in dynawave scrubber[J].Chemical Engineering,2012,40(2):33-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700