聚醚醚酮(PEEK)个性化重建板修复下颌骨缺损的三维有限元分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Three-Dimensional Finite Element Analysis of PEEK Customized Reconstruction Plate for Mandibular Defect
  • 作者:高慧 ; 白丽云 ; 李显 ; 季平 ; 王超
  • 英文作者:GAO Hui;BAI Liyun;LI Xian;JI Ping;WANG Chao;Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Key Laboratory of Oral Diseases and Biomedical Science, Affiliated Stomatological Hospital of Chongqing Medical University;
  • 关键词:聚醚醚酮 ; 个性化重建板 ; 钛合金 ; 下颌骨重建 ; 三维有限元分析
  • 英文关键词:polyetheretherketone(PEEK);;customized reconstruction plates;;titanium alloy;;mandibular reconstruction;;three-dimensional finite element analysis
  • 中文刊名:YISX
  • 英文刊名:Journal of Medical Biomechanics
  • 机构:重庆医科大学附属口腔医院口腔疾病与生物医学重庆市重点实验室重庆市高校市级口腔生物医学工程重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:医用生物力学
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金面上项目(11872135);; 重庆市渝北区科委重点项目[2015(社)01号];; 重庆市卫生计生委面上项目(2017MSXM073);; 重庆高校创新团队建设计划资助项目(CXTDG201602006);; 重庆市高校市级口腔生物医学工程重点实验室资助项目(渝教科[2015]55号);; 重庆医科大学附属口腔医院科研培育项目(PYM201605)
  • 语种:中文;
  • 页:YISX201902013
  • 页数:7
  • CN:02
  • ISSN:31-1624/R
  • 分类号:83-89
摘要
目的应用三维有限元分析聚醚醚酮(PEEK)及其复合物重建板修复下颌骨缺损的应力分布。方法通过CBCT、Mimics、SolidWorks、Geomagic Studio和ANSYS Workbench等软件建立钛合金、聚醚醚酮(PEEK)、30%碳纤维增强聚醚醚酮(carbon-fiber-reinforced polyetheretherketone,CFR-PEEK)、68%CFR-PEEK重建板有限元模型,以钛合金作为对照。分别模拟两种咬合状态。载荷Ⅰ:前牙区垂直加载300 N;载荷Ⅱ:左侧后牙区垂直加载300 N。结果两种载荷下,重建板最大应力与其屈服强度的比值:PEEK模型>30%CFR-PEEK模型>钛合金模型>68%CFR-PEEK模型;颌骨最大应力:PEEK模型>30%CFR-PEEK模型>钛合金模型>68%CFR-PEEK模型。其中,在前牙区垂直载荷下,PEEK模型重建板和颌骨的最大应力都超过了其屈服强度,其他模型的最大应力均低于其屈服强度。结论 68%CFR-PEEK与钛合金有着相似的应力分布,可以满足颌骨缺损重建机械强度的要求,重建板出现断裂的风险较钛合金降低,但应力屏蔽的发生率略增高。研究结果可为修复下颌骨缺损的重建板材料的选择和临床应用提供依据。
        Objective To study the stress distributions of mandible defect by reconstruction with polyetheretherketone(PEEK) and its composite reconstruction plate through three-dimensional finite element analysis. Methods The finite element models of reconstruction plate of titanium alloy, PEEK, carbon-fiber-reinforced polyetheretherketone(CFR)-PEEK with 30% endless carbon fibers and CFR-PEEK with 68% endless carbon fibers were established by CBCT scanning,Mimics software,SolidWorks, Geomagic Studio and ANSYS Workbench software, and titanium alloy served as control. Two occlusal situations were simulated in the mandible model. Loading I: anterior region loading with 300 N; loading II: left posterior region with 300 N. Results The ratio of the maximum Von Mises stress of the reconstructed plate to its yield strength under two load situations: PEEK system > 30%CFR-PEEK system > titanium alloy system > 68% CFR-PEEK system; the maximum stress of the mandible: PEEK system > 30% CFR-PEEK system > titanium alloy system > 68% CFR-PEEK system. In the PEEK system, the maximum Von Mises stress of reconstructed plate and mandibular exceeded its yield strength under loading I; in the other systems, the maximum Von Mises stresses of mandible and reconstruction plate were below the yield strength. Conclusions The reconstruction plate of CFR-PEEK with 68% endless carbon fibers distributed the stresses in a similar manner as the titanium reconstruction plate, which could meet the mechanical strength requirements of mandible defect reconstruction. The fracture risk of the reconstructed plate was lower than that of titanium alloy, but the incidence of stress shielding was slightly higher. The result can provide references for the selection of materials and clinical application of reconstruction plate for mandibular defects.
引文
[1] 赵巍,杨德安,梁崇,等.PEEK及其复合材料的研究与应用[J].材料导报,2003,17(9):68-70.
    [2] KURTZ SM,DEVINE JN.PEEK biomaterials in trauma,orthopedic,and spinal implants [J].Biomaterials,2007,28(32):4845-4869.
    [3] SARRAFPOUR B,SWAIN M,LI Q,et al.Tooth eruption results from bone remodelling driven by bite forces sensed by soft tissue dental follicles:A finite element analysis.[J].Plos One,2013,8(3):e58803.
    [4] BHERING CLB,MESQUITA MF,KEMMOKU DT,et al.Comparison between all-on-four and all-on-six treatment concepts and framework material on stress distribution in atrophic maxilla:A prototyping guided 3D-FEA study [J].Mater Sci Eng C Mater Biol Appl,2016,69:715-725.
    [5] HANASONO MM,GOEL N,DEMONTE F.Calvarial reconstruction with polyetheretherketone implants [J].Ann Plas Surg,2009,62(6):653-655.
    [6] GOODSON ML,FARR D,KEITH D,et al.Use of two-piece polyetheretherketone (PEEK) implants in orbitozygomatic reconstruction [J].Br J Oral Maxillofac Surg,2012,50(3):268-269.
    [7] BEHRENDT P,KRUSE E,KLüTER T,et al.Fixed angle carbon fiber reinforced polymer composite plate for treatment of distal radius fractures:Pilot study on clinical applications [J].Unfallchirurg,2017,120(2):139-146.
    [8] KUMAR BP,VENKATESH V,JEEVAN KUMAR KA,et al.Mandibular reconstruction:Overview [J].J Maxillofac Oral Surg,2015,15(4):1-17
    [9] 李小康,伍苏华,李轶,等.3D打印多孔钛合金与聚醚醚酮椎间融合器对羊颈椎融合效果的对比研究[J].中华创伤骨科杂志,2015,17(1):34-39.
    [10] TAKAHASHI N,KITAGAMI T,KOMORI T.Behaviour of teeth under various loading conditions with finite element method [J].J Oral Rehabil,2010,7(6):453-461.
    [11] 张维奕,王超,杨崇实.皮质骨切开辅助大鼠正畸牙齿移动有限元分析[J].医用生物力学,2018,33(1):48-54.ZHANG WY,WANG C,YANG CS.Finite element analysis on corticotomy-facilitated orthodontic tooth movement in rat [J].J Med Biomech,2018,33(1):48-54.
    [12] 王文亚,傅波,罗华,等.不同桩核冠修复上颌中切牙的三维有限元模型建立及应力分析[J].医用生物力学,2014,29(1):25-30.WANG WY,FU B,LUO H,et al.Three-dimensional finite element modeling and stress analysis on different posts and cores for repairing the maxillary central incisors [J].J Med Biomech,2014,29(1):25-30.
    [13] YU C,CHAO W,HUANG Y,et al.Biomechanical evaluation of the natural abutment teeth in combined tooth-implant-supported telescopic prostheses:A three-dimensional finite element analysis [J].Comput Method Bio,2017,20(9):967-979.
    [14] NAGASAO T,KOBAYASHI M,TSUCHIYA Y,et al.Finite element analysis of the stresses around endosseous implants in various reconstructed mandibular models [J].J Cranio Maxill Surg,2003,31(3):170-177.
    [15] KIMURA A,NAGASAO T,KANEKO T,et al.Adaquate fixation of plates for stability during mandibular reconstruction [J].J Cranio Maxill Surg,2006,34(4):193-200.
    [16] HUO J,DéRAND P,R?NNAR LE,et al.Failure location prediction by finite element analysis for an additive manufactured mandible implant [J].Med Eng Phys,2015,37(9):862-869.
    [17] POBLOTH AM,CHECA S,RAZI H,et al.Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep [J].Sci Transl Med,2018,10(423):eaam8828.
    [18] LIU Y,FAN Y,JIANG X,et al.A customized fixation plate with novel structure designed by topological optimization for mandibular angle fracture based on finite element analysis [J].Biomed Eng Online,2017,16(1):131.
    [19] MALá E,VEJRA?KOVá E,BIELMEIEROVá J,et al.Long term monitoring of nutritional,clinical status and quality of life in head and neck cancer patients [J].Klin Onkol,2015,28(3):200-214.
    [20] OLDANI C,DOMINGUEZ A.Titanium as a biomaterial for implants [M]// Recent advances in arthroplasty.Rijeka:In Tech,2012.
    [21] 贾暮云,蒋济金,初晓艺,等.下颌骨缺损重建板修复术后十年回顾性分析[J].中华口腔医学杂志,2016,51(7):401-404.
    [22] BRANTIGAN JW,NEIDRE A,TOOHEY JS.The lumbar I/F Cage for posterior lumbar interbody fusion with the variable screw placement system:10-year results of a Food and Drug Administration clinical trial [J].Spine J,2004,4(6):681-688.
    [23] AKHAVAN S,MATTHIESEN MM,SCHULTE L,et al.Clinical and histologic results related to a low-modulus composite total hip replacement stem [J].J Bone Joint Surg Am,2006,88(6):1308-1314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700