后基因组时代基因组重排在微生物菌种选育中的应用及展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in genome shuffling in the post genomic era for microbial strains improvement
  • 作者:蒋承州 ; 黄勇 ; 段燕文 ; 朱湘成
  • 英文作者:JIANG Cheng-Zhou;HUANG Yong;DUAN Yan-Wen;ZHU Xiang-Cheng;Xiangya International Academy of Translational Medicine, Central South University;National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery;Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery;
  • 关键词:微生物代谢产物 ; 菌种选育 ; 基因组重排 ; 组学 ; 生物信息分析
  • 英文关键词:Microbial metabolites;;Strain improvement;;Genome shuffling;;Omics;;Bioinformatics analysis
  • 中文刊名:WSWT
  • 英文刊名:Microbiology China
  • 机构:中南大学湘雅国际转化医学联合研究院;新药组合生物合成国家地方联合工程研究中心;组合生物合成与天然产物药物湖南省工程研究中心;
  • 出版日期:2018-03-16 13:51
  • 出版单位:微生物学通报
  • 年:2018
  • 期:v.45
  • 基金:高等学校学科创新引智计划(111计划)(B0803420)~~
  • 语种:中文;
  • 页:WSWT201811022
  • 页数:9
  • CN:11
  • ISSN:11-1996/Q
  • 分类号:191-199
摘要
基因组重排作为一种实用高效的育种技术,在缺乏遗传背景认知和可操作遗传体系等条件下,可以突破微生物种属间的限制,经过多轮递推的原生质体融合来加速其人工定向进化,在微生物菌种改良及代谢产物开发和产业化等研究领域得到了广泛应用。步入后基因组时代,快速发展的组学和生物信息学使基因组重排成为连接各种微生物育种方法的重要纽带,为我们深入探索微生物复杂的代谢网络和全局调控机制,更为精准地实施对微生物的人工调控和定向进化提供了契机。本文系统性地回顾了近年来基因组重排在微生物菌种选育中的应用研究,尤其针对围绕其开展的组学研究进行了详细阐述,并对基因组重排与组学、生物信息学和合成生物学等新兴技术的联合应用进行了展望。
        As a practical and efficient strain breeding technology, genome shuffling has circumvented the essential requirements of comprehensively cognized genetic background and operable genetic system for the microbial manipulations, and could break through the species limit to accelerate the directed evolution of important microorganisms via the recursive protoplasts fusion. Hence it has been widely applied for the strain improvement and the industrial development of various metabolites in the microorganisms. In the post genomic era, the rapid development of omics and bioinformatics make genome shuffling as an important bridge to link different strain breeding methods, and enable us to explore the complex metabolic networks and global regulatory mechanisms in microbes, which provides an opportunity to design the accurate manipulation for the directed evolution of target microorganism. This paper has systematically summarized the recent applications of genome shuffling in the microbial strain improvement, the research progresses involving related studies in genomics, transcriptomics and proteinomics are especially described in detail. Moreover, the great potential of combinative applications of genome shuffling with omics, bioinformatics, and synthetic biology, are also forecasted.
引文
[1]Liu WS,Jiang RR.Combinatorial and high-throughput screening approaches for strain engineering[J].Applied Microbiology and Biotechnology,2015,99(5):2093-2104
    [2]Shen B.A new golden age of natural products drug discovery[J].Cell,2015,163(6):1297-1300
    [3]Bekker V,Dodd A,Brady D,et al.Tools for metabolic engineering in Streptomyces[J].Bioengineered,2014,5(5):293-299
    [4]Pál C,Papp B,Pósfai G.The dawn of evolutionary genome engineering[J].Nature Reviews Genetics,2014,15(7):504-512
    [5]Adrio JL,Demain AL.Genetic improvement of processes yielding microbial products[J].FEMS Microbiology Reviews,2006,30(2):187-214
    [6]Zhang YX,Perry K,Vinci VA.Genome shuffling leads to rapid phenotypic improvement in bacteria[J].Nature,2002,415(6872):644-646
    [7]Biot-Pelletier D,Martin VJJ.Evolutionary engineering by genome shuffling[J].Applied Microbiology and Biotechnology,2014,98(9):3877-3887
    [8]Barrick JE,Lenski RE.Genome dynamics during experimental evolution[J].Nature Reviews Genetics,2013,14(12):827-839
    [9]Gong JX,Zheng HJ,Wu ZJ,et al.Genome shuffling:Progress and applications for phenotype improvement[J].Biotechnology Advances,2009,27(6):996-1005
    [10]Wang PM,Zheng DQ,Liu TZ,et al.The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae[J].Bioresource Technology,2012,108:203-210
    [11]Li S,Li F,Chen XS,et al.Genome shuffling enhancedε-poly-L-lysine production by improving glucose tolerance of Streptomyces graminearus[J].Applied Biochemistry and Biotechnology,2012,166(2):414-423
    [12]Gao XF,Zhao H,Zhang GH,et al.Genome shuffling of Clostridium acetobutylicum CICC 8012 for improved production of acetone-butanol-ethanol(ABE)[J].Current Microbiology,2012,65(2):128-132
    [13]Zhang J,Wang XJ,Diao JN,et al.Streptomycin resistance-aided genome shuffling to improve doramectin productivity of Streptomyces avermitilis NEAU1069[J].Journal of Industrial Microbiology&Biotechnology,2013,40(8):877-889
    [14]Lv XA,Jin YY,Li YD,et al.Genome shuffling of Streptomyces viridochromogenes for improved production of avilamycin[J].Applied Microbiology and Biotechnology,2013,97(2):641-648
    [15]Wang QL,Zhang D,Li YD,et al.Genome shuffling and ribosome engineering of Streptomyces actuosus for high-yield nosiheptide production[J].Applied Biochemistry and Biotechnology,2014,173(6):1553-1563
    [16]Wang L,Chen XS,Wu GY,et al.Genome shuffling and gentamicin-resistance to improveε-poly-L-lysine productivity of Streptomyces albulus W-156[J].Applied Biochemistry and Biotechnology,2016,180(8):1601-1617
    [17]Wang HK,Zhang J,Wang XJ,et al.Genome shuffling improves production of the low-temperature alkalophilic lipase by Acinetobacter johnsonii[J].Biotechnology Letters,2012,34(1):145-151
    [18]El-Gendy MMAA,Al-Zahrani HAA,El-Bondkly AMA.Genome shuffling of mangrove endophytic Aspergillus luchuensis MERV10 for improving the cholesterol-lowering agent lovastatin under solid state fermentation[J].Mycobiology,2016,44(3):171-179
    [19]Li SB,Qian Y,Liang ZW,et al.Enhanced butanol production from cassava with Clostridium acetobutylicum by genome shuffling[J].World Journal of Microbiology and Biotechnology,2016,32(4):53
    [20]Li S,Chen XS,Dong CL,et al.Combining genome shuffling and interspecific hybridization among Streptomyces improvedε-poly-L-lysine production[J].Applied Biochemistry and Biotechnology,2013,169(1):338-350
    [21]Shi J,Zhang M,Zhang LB,et al.Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production[J].Microbial Biotechnology,2014,7(2):90-99
    [22]Hou LH,Meng M,Guo L,et al.A comparison of whole cell directed evolution approaches in breeding of industrial strain of Saccharomyces cerevisiae[J].Biotechnology Letters,2015,37(7):1393-1398
    [23]Gu CK,Wang GY,Mai S,et al.ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production[J].Applied Microbiology and Biotechnology,2017,101(5):2189-2199
    [24]Zheng P,Liu M,Liu XD,et al.Genome shuffling improves thermotolerance and glutamic acid production of Corynebacteria glutamicum[J].World Journal of Microbiology and Biotechnology,2012,28(3):1035-1043
    [25]Zheng P,Zhang KK,Yan Q,et al.Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling[J].Journal of Industrial Microbiology&Biotechnology,2013,40(8):831-840
    [26]Zhang GQ,Lin YP,Qi XN,et al.Genome shuffling of the nonconventional yeast Pichia anomala for improved sugar alcohol production[J].Microbial Cell Factories,2015,14:112
    [27]Luna-Flores CH,Palfreyman RW,Kr?mer JO,et al.Improved production of propionic acid using genome shuffling[J].Biotechnology Journal,2017,12(2):1600120
    [28]Wang YM,Zhang GY,Zhao X,et al.Genome shuffling improved the nucleosides production in Cordyceps kyushuensis[J].Journal of Biotechnology,2017,260:42-47
    [29]El-Bondkly AMA.Molecular identification using ITS sequences and genome shuffling to improve 2-deoxyglucose tolerance and xylanase activity of marine-derived fungus,Aspergillus sp.NRCF5[J].Applied Biochemistry and Biotechnology,2012,167(8):2160-2173
    [30]Wang C,Wu GZ,Li YD,et al.Genome shuffling of Penicillium citrinum for enhanced production of nuclease P1[J].Applied Biochemistry and Biotechnology,2013,170(6):1533-1545
    [31]Li W,Chen GG,Gu LL,et al.Genome shuffling of Aspergillus niger for improving transglycosylation activity[J].Applied Biochemistry and Biotechnology,2014,172(1):50-61
    [32]Wu P,Zhao XH,Pan SY.Intraspecific protoplast fusion of Brettanomyces anomalus for improved production of an extracellularβ-glucosidase[J].Biotechnology&Biotechnological Equipment,2014,28(5):878-881
    [33]Zhao YP,Jiang CX,Yu HP,et al.Genome shuffling of Aspergillus glaucus HGZ-2 for enhanced cellulase production[J].Applied Biochemistry and Biotechnology,2014,174(4):1246-1259
    [34]Wang SH,Duan MJ,Liu YL,et al.Enhanced production of fructosyltransferase in Aspergillus oryzae by genome shuffling[J].Biotechnology Letters,2017,39(3):391-396
    [35]Luo JM,Li JS,Liu D,et al.Genome shuffling of Streptomyces gilvosporeus for improving natamycin production[J].Journal of Agricultural and Food Chemistry,2012,60(23):6026-6036
    [36]Zhao JF,Li YH,Zhang C,et al.Genome shuffling of Bacillus amyloliquefaciens for improving antimicrobial lipopeptide production and an analysis of relative gene expression using FQRT-PCR[J].Journal of Industrial Microbiology&Biotechnology,2012,39(6):889-896
    [37]Du WJ,Huang D,Xia ML,et al.Improved FK506 production by the precursors and product-tolerant mutant of Streptomyces tsukubaensis based on genome shuffling and dynamic fed-batch strategies[J].Journal of Industrial Microbiology&Biotechnology,2014,41(7):1131-1143
    [38]Yu GH,Hu YS,Hui M,et al.Genome shuffling of Streptomyces roseosporus for improving daptomycin production[J].Applied Biochemistry and Biotechnology,2014,172(5):2661-2669
    [39]Zhang YF,Liu SY,Du YH,et al.Genome shuffling of Lactococcus lactis subspecies lactis YF11 for improving nisin Zproduction and comparative analysis[J].Journal of Dairy Science,2014,97(5):2528-2541
    [40]Jin QC,Shen N,Yin H,et al.DNA shuffling of ptr resistance gene leads to improved pristinamycin production in Streptomyces pristinaespiralis[J].Molecular Biology,2015,49(2):253-259
    [41]Zhao JF,Zhang C,Lu J,et al.Enhancement of fengycin production in Bacillus amyloliquefaciens by genome shuffling and relative gene expression analysis using RT-PCR[J].Canadian Journal of Microbiology,2016,62(5):431-436
    [42]Wang MZ,Zhang W,Xu WK,et al.Optimization of genome shuffling for high-yield production of the antitumor deacetylmycoepoxydiene in an endophytic fungus of mangrove plants[J].Applied Microbiology and Biotechnology,2016,100(17):7491-7498
    [43]Yin H,Ma YL,Deng Y,et al.Genome shuffling of Saccharomyces cerevisiae for enhanced glutathione yield and relative gene expression analysis using fluorescent quantitation reverse transcription polymerase chain reaction[J].Journal of Microbiological Methods,2016,127:188-192
    [44]Zeng W,Chen GG,Wu H,et al.Improvement of Bacillus subtilis for poly-γ-glutamic acid production by genome shuffling[J].Microbial Biotechnology,2016,9(6):824-833
    [45]Wang MZ,Liu SS,Li YY,et al.Protoplast mutation and genome shuffling induce the endophytic fungus Tubercularia sp.TF5 to produce new compounds[J].Current Microbiology,2010,61(4):254-260
    [46]Zheng DQ,Zhang K,Gao KH,et al.Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast(ADY)production[J].PLoS One,2013,8(12):e85022
    [47]Cheng C,Almario MP,Kao KC.Genome shuffling to generate recombinant yeasts for tolerance to inhibitors present in lignocellulosic hydrolysates[J].Biotechnology Letters,2015,37(11):2193-2200
    [48]Zhang W,Geng AL.Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method[J].Biotechnology for Biofuels,2012,5(1):46
    [49]Reyes LH,Almario MP,Winkler J,et al.Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli[J].Metabolic Engineering,2012,14(5):579-590
    [50]Ding S,Zhang Y,Zhang J,et al.Enhanced deacidification activity in Schizosaccharomyces pombe by genome shuffling[J].Yeast,2015,32(2):317-325
    [51]Snoek T,Nicolino MP,van den Bremt S,et al.Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance[J].Biotechnology for Biofuels,2015,8:32
    [52]de Gérando HM,Fayolle-Guichard F,Rudant L,et al.Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling[J].Applied Microbiology and Biotechnology,2016,100(12):5427-5436
    [53]Han GG,Song AA,Kim EB,et al.Improved antimicrobial activity of Pediococcus acidilactici against Salmonella gallinarum by UV mutagenesis and genome shuffling[J].Applied Microbiology and Biotechnology,2017,101(13):5353-5363
    [54]Zhao YJ,Duan CC,Gao L,et al.Genome shuffling of Lactobacillus plantarum C88 improves adhesion[J].Bioscience,Biotechnology,and Biochemistry,2017,81(1):184-193
    [55]Lee BU,Choi MS,Kim DM,et al.Genome shuffling of Stenotrophomonas maltophilia OK-5 for improving the degradation of explosive RDX(Hexahydro-1,3,5-trinitro-1,3,5-triazine)[J].Current Microbiology,2017,74(2):268-276
    [56]Jin QC,Jin ZH,Zhang LJ,et al.Probing the molecular mechanisms for pristinamycin yield enhancement in Streptomyces pristinaespiralis[J].Current Microbiology,2012,65(6):792-798
    [57]Huang J,Wu RZ,Chen D,et al.Transcriptional profiling of the Trichoderma reesei recombinant strain HJ48 by RNA-seq[J].Journal of Microbiology and Biotechnology,2016,26(7):1242-1251
    [58]Zheng DQ,Chen J,Zhang K,et al.Genomic structural variations contribute to trait improvement during whole-genome shuffling of yeast[J].Applied Microbiology and Biotechnology,2014,98(7):3059-3070
    [59]Guan NZ,Shin HD,Chen RR,et al.Understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the level of proteomics[J].Scientific Reports,2014,4:6951
    [60]Zhao JF,Cao L,Zhang C,et al.Differential proteomics analysis of Bacillus amyloliquefaciens and its genome-shuffled mutant for improving surfactin production[J].International Journal of Molecular Sciences,2014,15(11):19847-19869
    [61]Pinel D,Colatriano D,Jiang H,et al.Deconstructing the genetic basis of spent sulphite liquor tolerance using deep sequencing of genome-shuffled yeast[J].Biotechnology for Biofuels,2015,8:53
    [62]Chen XY,Wei PL,Fan LM,et al.Generation of high-yield rapamycin-producing strains through protoplasts-related techniques[J].Applied Microbiology and Biotechnology,2009,83(3):507-512
    [63]Watrous J,Roach P,Alexandrov T,et al.Mass spectral molecular networking of living microbial colonies[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(26):E1743-E1752

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700