太湖春季藻类生长的磷营养盐阈值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Developing the critical phosphorus threshold for spring algal growth in Lake Taihu,China
  • 作者:吴雅丽 ; 许海 ; 杨桂军 ; 朱广伟 ; 秦伯强
  • 英文作者:WU Ya-li;XU Hai;YANG Gui-jun;ZHU Guang-wei;QIN Bo-qiang;School of Environment and Civil Engineering,Jiangnan University;State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;
  • 关键词:太湖 ; ; 阈值 ; 浮游植物
  • 英文关键词:Lake Taihu;;phosphorus;;threshold;;phytoplankton
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:江南大学环境与土木工程学院;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室;
  • 出版日期:2013-09-20
  • 出版单位:中国环境科学
  • 年:2013
  • 期:v.33
  • 基金:国家自然科学基金资助项目(41003043,41171368,41101053);; 江苏省自然科学基金(BK2012895);; 国家水体污染控制与治理科技重大专项(2012ZX07101-010)
  • 语种:中文;
  • 页:ZGHJ201309017
  • 页数:8
  • CN:09
  • ISSN:11-2201/X
  • 分类号:88-95
摘要
为了探讨太湖春季藻类生长的磷营养盐阈值,采用原位营养盐富集生物模拟实验,研究了太湖梅梁湾浮游植物对不同浓度无机磷(PO43--P)的生长响应.结果表明:外源磷添加能显著的促进浮游植物生长,但存在阈值.当磷浓度低于0.02mg/L时,藻类生长速率和生物量是可控的,当磷浓度高于0.02mg/L时,生长速率和生物量没有变化,因此春季藻类生长的无机磷阈值为0.02mg/L,相当于总磷阈值为0.059mg/L.太湖目前只有部分湖区总磷年平均浓度处于总磷阈值以下,控制流域的磷负荷,降低太湖的浮游植物生物量将是一个长期过程.
        In order to establish a phosphorus threshold for phytoplankton growth in Tai Lake(Taihu) in spring,a in situ nutrition enrichment experiment was conducted in highly eutrophic Meiliangbay to examine the growth response of phytoplanktonto different concentration of inorganic phosphorus(PO43--P).The results showed that exogenous phosphorus(P) enrichment could promote phytoplankton growth, and that it exhibited threshold characteristics.Phytoplankton growth rate and biomass would be controlled at P addition levels of less than 0.02mg/L.When the P concentration exceeded 0.02mg/L,the growth rate and biomass remained constant.Therefore,the inorganic P threshold value for algal growth is 0.02mg/L in spring,which equivalent to 0.059mg/L of the TP threshold value.
引文
[1]秦伯强.湖泊生态恢复的基本原理与实现[J].生态学报,2007,27(11):4848-4856.
    [2]Paerl H W.Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marinecontinuum.Advances in Experimental[J].Medicine and Biology,2008,619:216-241.
    [3]许海,秦伯强,朱广伟.太湖不同湖区夏季蓝藻生长的营养盐限制研究[J].中国环境科学,2012,32(12):2230-2236.
    [4]秦伯强,胡维平,陈伟民.太湖水环境演化过程与机理[M].北京:科学出版社,2004.
    [5]郑朔芳,杨苏文.藻类生长影响因素研究进展湖泊有毒藻类控制与生态修复国际学术研讨会论文集[C].中国无锡:2003,1:397-401.
    [6]王霞,吕宪国,闫伯茹,等.基于富营养化阈值的松花湖水环境容量分析[J].湖泊科学,2006,18(5):503-508.
    [7]Bernhard AE,Peele ER.Nitrogen limitation of phytoplankton in a shallow embayment in northern Puget Sound[J].Estuaries,1997,20(4):759-769.
    [8]Hutchins D A,Bruland KW.Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime[J].Nature,1998,393(6685):561-564.
    [9]朱广伟.太湖水质的时空分异特征及其与水华的关系[J].长江流域资源与环境,2009,(5):439-455.
    [10]Xu H,Paerl W H,Qin B Q,et al.Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu,China[J].Limnology and Oceanography,2010,55:420-432.
    [11]杨龙,王晓燕,王子健,等.基于磷阈值的富营养化风险评价体系[J].中国环境科学,2009,29(S1):20-34.
    [12]张家瑞,曾勇,赵彦伟.白洋淀湿地水华暴发阈值分析[J].生态学杂志,2011,30(8):1744-1750.
    [13]Eston A D,Clesceri L S,Greenberg A E.Standard methods for the examination of water and wastewater[M].19th edition.Washington,1995.
    [14]陈宇炜,陈开宁,胡耀辉.浮游植物叶绿素a测定的“热乙醇法”及其测定误差的探讨[J].湖泊科学,2006,18:550-552.
    [15]胡鸿钧,李尧英,魏印心,等.中国淡水藻类[M].上海:上海科学技术出版社,1979.
    [16]李小平.美国湖泊富营养化的研究和治理[J].自然杂志,2002,24(2):63-68.
    [17]刘霞,陆晓华,陈宇炜.太湖浮游硅藻时空烟花与环境因子的关系[J].环境科学学报,2012,32(4):821-827.
    [18]Schindler D W.Eutrophication and Recovery in Experimental Lakes:Implications for Lake Management[J].Science,1974,184:897-899.
    [19]Schindler D W,Hecky R E,Findly D L,et al.Eutrophication of lakes cannot be controlled by reducing nitrogen input:Results of a 37-year whole-ecosystem experiment[J].PNAS,2008,105(32):11254-11258.
    [20]Dokulil M T,Teubner K.Cyanobacterial dominance in lakes[J].Hydrobiologia,2000,438:1-12.
    [21]Xu H,Paerl H W,Qin B,Zhu G,Gao G.Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu,China[J].Limnol Oceanogr,2010,55(1):420-432.
    [22]Wang X D,Qin B Q,GaoG,et al.Phytoplankton community from Lake Taihu,China,has dissimilar responses to onorganic and organic nutrients[J].Journal of Environmental Science,2010,22:1491-1499.
    [23]Li X P.Lake eutrophication research and control in USA[J].Natural Journal,2002,24(2):63-68.
    [24]王海黎,洪华生.海洋环境中溶解有机磷的生物活性初探[J].厦门大学学报(自然科学版),1995,34(3):425-430.
    [25]周易勇,付永清.水体磷酸酶来源、特性及其生态学意义[J].湖泊科学,1999,11(3):274-279.
    [26]Hantke B,Fleischer P,Domanyl,et al.P release from DOP by phosphatise activity in comparison to P excretion by zooplankton Studies in hardwater lakes of different trophic level[J].Hydrobiologia,1996,317:151-162.
    [27]高光,秦伯强,朱广伟,等.太湖梅梁湾中碱性磷酸酶的活性及其与藻类生长的关系[J].湖泊科学,2004,16(3):245-251.
    [28]高光,高锡芸,秦伯强,等.太湖水体中碱性磷酸酶的作用阈值[J].湖泊科学,2000,12(4):353-359.
    [29]易文利,金相灿,储昭升,等.不同质量浓度的磷对铜绿微囊藻生长及细胞内磷的影响[J].环境科学研究,2004,17(Suppl.):58-61.
    [30]Takamura N,Iwakuma T,Yasuno M.Photosynthesis and primary production of Microc-ystis aeruginosa Kütz in Lake Kasumigaura[J].Plankton Res,1985,7:303-312.
    [31]宋晓兰,刘正文,潘宏凯,等.太湖梅梁湾与五里湖浮游植物群落的比较[J].湖泊科学,2007,19(6):643-651.
    [32]Xu Y J,Li D S,Wang W L,et al.Variations of the chemical factors in sea-water ponds before and after Prorocentrum micanswater-bloom[J].Trans Oceanol Limnol,2000(1):41-46.
    [33]王小冬,秦伯强,高光,等.无机氮磷添加对太湖来源浮游植物和附着生物生物量的影响[J].生态学杂志,2011,3(10):2257-2261.
    [34]Hotzel G,Croome R.Population dynamics of Aulacoseira granulata(HER.)SIMONSON(Bacillariophyceae,Centrales),the dominant alga in the Murray River,Australia[J].Archiv für Hydrobiologie,1996,136(2):191-215.
    [35]朱伟,万蕾,赵联芳.不同温度和营养盐质量浓度条件下藻类的种间竞争规律[J].生态环境,2008,17(1):6-11.
    [36]张青田,王新华,林超,等.温度和光照对铜绿微囊藻生长的影响[J].天津科技大学学报,2011,26(2):24-27.
    [37]金相灿,储昭升,杨波,等.温度对水华微囊藻及孟氏浮游蓝丝藻生长、光合作用及浮力变化的影响[J].环境科学学报,2008,28(1):50-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700