龙门山灌县—安县断裂带断层泥低磁化率的矿物、化学响应和蠕滑作用环境
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mineral and chemical response to low magnetic susceptibility of the fault gouge from the Guanxian-Anxian fault zone and fault creep setting in the Longmen Shan
  • 作者:何祥丽 ; 李海兵 ; 张蕾 ; 王焕 ; 葛成隆 ; 曹勇 ; 白明坤 ; 李成龙 ; 叶小舟 ; 韩帅
  • 英文作者:HE XiangLi;LI HaiBing;ZHANG Lei;WANG Huan;GE ChengLong;CAO Yong;BAI MingKun;LI ChengLong;YE XiaoZhou;HAN Shuai;School of Earth Science and Resources,China University of Geosciences;Key Laboratory of Deep-Earth Dynamics of Natural Resources Ministry,Institute of Geology, Chinese Academy of Geological Sciences;Key Laboratory of Paleomagnetism and Tectonic reconstruction of Natural Resources Ministry,Institute of Geomechanics, Chinese Academy of Geological Sciences;
  • 关键词:灌县—安县断裂带 ; 断层泥 ; 磁化率 ; 蠕滑 ; WFSD-3P
  • 英文关键词:Guanxian-Anxian fault zone;;Fault gouge;;Magnetic susceptibility;;Creeping fault;;WFSD-3P
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:地球科学与资源学院中国地质大学(北京);自然资源部深地动力学重点实验室中国地质科学院地质研究所;自然资源部古地磁与古构造重建重点实验室中国地质科学院地质力学研究所;
  • 出版日期:2018-05-15
  • 出版单位:地球物理学报
  • 年:2018
  • 期:v.61
  • 基金:国家自然科学基金项目(41520104006,41330211,41602226);; 中国地质科学院基本科研业务费项目(YYWF201601)联合资助
  • 语种:中文;
  • 页:DQWX201805010
  • 页数:15
  • CN:05
  • ISSN:11-2074/P
  • 分类号:136-150
摘要
断层带内的流体不仅可以通过水岩反应改变断裂岩的矿物组成和化学成分,从而导致化学性质和物理性质的变化,而且可以影响或控制断裂带的变形行为.断裂带中岩石磁学特征是由特定化学环境下磁性矿物的种类和含量所决定的,因此,从矿物学和地球化学角度探讨断裂岩的磁性变化,对揭示断层的变形行为和环境具有一定的指示作用.本文以汶川科钻WFSD-3P钻孔中龙门山灌县—安县断裂带断裂岩为研究对象,运用高分辨率磁化率测试、XRD矿物成分半定量分析、XRF元素扫描以及不同价态Fe元素含量分析等多种方法开展断层磁学变化和变形环境的研究.磁化率测试结果表明灌县—安县断裂带断层泥的磁化率值普遍低于对应的围岩磁化率平均值.结合前人研究成果表明造成该断层泥低磁化率异常的原因是在间震期的长期流体作用下,铁磁性矿物(例如磁铁矿)转变成顺磁性矿物(铁硫化物、菱铁矿或含铁的黏土矿物).新生铁硫化物和含铁黏土矿物是在间震期缓慢形成的,而黏土矿物含量的增加弱化了断层强度,促进断层蠕滑,这说明断层泥低磁化率异常可能指示了该断裂在间震期长期缓慢活动,即为蠕滑变形.断层泥中黄铁矿的发育和高Fe~(2+)和S元素、低Fe~(3+)的特征显示灌县—安县断裂作用环境通常是在低温、还原环境中进行的.这些结果与低磁化率值的相关性暗示断层泥低磁化率异常可能对活动断层的低温还原环境具有指示意义.
        Fluid infiltration within fault zones can not only alter the mineral and chemicalcomposition of fault rocks by fluid-rock interactions and thus causes variation in chemical and physical properties,but can also influence or control the deformational behavior of a fault zone.Rock magnetic property in the fault zone is controlled by the type and content of magnetic minerals in a particular chemical environment.Therefore,studying the magnetic variation of fault rocks by mineralogy and geochemistry can reveal the deformational behavior and environment of an active fault.In this study,high-resolution magnetic susceptibility measurements,X-Ray Diffraction(XRD)minerals analyses,X-Ray Fluorescence(XRF)element scanning,and Fe element geochemical analyses were implemented on some representative cores from the Wenchuan earthquake Fault Scientific Drilling Hole-3P(WFSD-3P)located on the Guanxian-Anxian Fault zone(GAF)to study the magnetic variation and deformational environment of the fault.The measurement results show that the magnetic susceptibility values of the fault gouge in the GAF are commonly less than the average of the corresponding host rocks.The low magnetic susceptibility of the fault gouge results from the transformation from ferromagnetic minerals(such as magnetite)to paramagnetic minerals(Fe-sulfides,siderite,or iron-bearing clay minerals)under long-term fluid infiltration during interseismic periods based on Scanning Electron Microscope(SEM)observation and previous results.New Fe-sulfides and iron-bearing clay minerals were formed slowly during interseismic periods.An increase in clay minerals content weakens the fault and facilitates the creeping of the GAF,which suggests that low magnetic susceptibility of the fault gouge may be an indicator of a slowly slipping active fault during interseismic periods(i.e.creep deformation).The development of pyrite,relatively high contents of Fe~(2+) and sulfur element,and the low content of Fe~(3+) in the fault gouge implies that the faulting of the GAF is commonly at a low temperature and reducing environment.The relationship between the above observations and the low magnetic susceptibility of the fault gouge shows that the latter may attest to the interseismic low-temperature and reducing environment along an active fault.
引文
Aringhieri R.2004.Nanoporosity characteristics of some natural clay minerals and soils.Clays and Clay Minerals,52(6):700-704.
    Aubourg C,Pozzi J P.2010.Toward a new<250℃pyrrhotitemagnetite geothermometer for claystones.Earth and Planetary Science Letters,294(1-2):47-57.
    Cairanne G,Aubourg C,Pozzi J P,et al.2004.Laboratory chemical remanent magnetization in a natural claystone:a record of two magnetic polarities.Geophysical Journal International,159(3):909-916.
    Chang S H,Wang W H,Lee J C.2009.Modelling temporal variation of surface creep on the Chihshang fault in eastern Taiwan with velocity-strengthening friction.Geophysical Journal International,176(2):601-613.
    Chen K H,Bürgmann R.2017.Creeping faults:good news,bad news?.Reviews of Geophysics,55(2):282-286.
    Chou Y M,Song S R,Aubourg C,et al.2012a.Pyrite alteration and neoformed magnetic minerals in the fault zone of the Chi-Chi earthquake(MW7.6,1999):Evidence for frictional heating and co-seismic fluids.Geochemistry,Geophysics,Geosystems,13(8):Q08002,doi:10.1029/2012GC004120.
    Chou Y M,Song S R,Aubourg C,et al.2012b.An earthquake slip zone is a magnetic recorder.Geology,40(6):551-554.
    Densmore A L,Ellis M A,Li Y,et al.2007.Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau.Tectonics,26(4):TC4005,doi:10.1029/2006TC001987.
    Fisher Q J,Knipe R J.2001.The permeability of faults within siliciclastic petroleum reservoirs of the north sea and norwegian continental shelf.Marine and Petroleum Geology,18(10):1063-1081.
    Fu B H,Shi P L,Guo H D,et al.2011.Surface deformation related to the 2008 Wenchuan earthquake,and mountain building of the Longmen shan,eastern Tibetan Plateau.Journal of Asian Earth Sciences,40(4):805-824.
    Gillett S L.2003.Paleomagnetism of the Notch Peak contact metamorphic aureole,revisited:pyrrhotite from magnetite+pyrite under submetamorphic conditions.Journal of Geophysical Research,108(B9):2446,doi:10.1029/2002JB002386.
    Goddard J V,Evans J P.1995.Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets,northwestern Wyoming,U.S.A.Journal of Structural Geology,17(4):533-547.
    Goldstein A G,Brown L L.1988.Magnetic susceptibility anisotropy of mylonites from the Brevard Zone,North Carolina,U.S.A.Physics of the Earth and Planetary Interiors,51(4):290-300.
    Gratier J P,Thouvenot F,Jenatton L,et al.2013.Geological control of the partitioning between seismic and aseismic sliding behaviours in active faults:Evidence from the Western Alps,France.Tectonophysics,600:226-242.
    Grosz S,Matthews A,Ilani S,et al.2006.Iron mineralization and dolomitization in the Paran Fault zone,Israel:Implications for low-temperature basinal fluid processes near the Dead Sea Transform.Geofluids,6(2):137-153.
    Guichet X,Jouniaux L,Catel N.2006.Modification of streaming potential by precipitation of calcite in a sand-water system:Laboratory measurements in the pH range from 4 to 12.GeophysicalJournalInternational,166(1):445-460.
    Harris R A.2017.Large earthquakes and creeping faults.Reviews of Geophysics,55(1):169-198.
    He X L,Li H B,Wang H,et al.2018.Creeping Guanxian-Anxian fault ruptured during the 2008 MW7.9 Wenchuan earthquake in the Longmen Shan thrust belt,China.Tectonics.
    Hirono T,Lin W,Yeh E C,et al.2006.High magnetic susceptibility of fault gouge within Taiwan Chelungpu fault:nondestructive continuous measurements of physical and chemical properties in fault rocks recovered from Hole B,TCDP.Geophysical Research Letters,33(15):L15303,doi:10.1029/2006GL026133.
    Hounslow M W,Morton A C.2004.Evaluation of sediment provenance using magnetic mineral inclusions in clastic silicates:Comparison with heavy mineral analysis.Sedimentary Geology,171(1-4):13-36.
    Ishikawa T,Tanimizu M,Nagaishi K,et al.2008.Coseismic fluidrock interactions at high temperatures in the chelungpu fault.Nature Geoscience,1(10):679-683.
    Jolivet R,Candela T,Lasserre C,et al.2015.The burst-like behavior of aseismic slip on a rough fault:the creeping section of the Haiyuan fault,China.Bulletin of the Seismological Society of America,105(1):480-488.
    Kapicka A,Hoffmann V,PetrovskE.2003.Pressure instability of magnetic susceptibility of pyrrhotite bearing rocks from the KTB borehole.Studia Geophysica et Geodaetica,47(2):381-391.
    Kuo L W,Song S R,Yeh E C,et al.2012.Clay mineralogy and geochemistry investigations in the host rocks of the Chelungpu fault,Taiwan:Implication for faulting mechanism.Journal of Asian Earth Sciences,59:208-218.
    Lang Y Q,Hu D Q,Liu C,et al.2011.Mineralogy study of magnetic susceptibility of rocks along the coast of the northern South China Sea.Chinese Journal of Geophysics(in Chinese),54(2):573-587,doi:10.3969/j.issn.0001-5733.2011.02.037.
    Li H B,Fu X F,Van der Woerd J,et al.2008.Co-seisimic surface rupture and dextral-slip oblique thrusting of the MS8.0 Wenchuan earthquake.Acta Geologica Sinica(in Chinese),82(12):1623-1643.
    Li H B,Wang H,Xu Z Q,et al.2013.Characteristics of the faultrelated rocks,fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1(WFSD-1).Tectonophysics,584:23-42.
    Li H B,Wang H,Yang G,et al.2016.Lithological and structural characterization of the Longmen Shan fault belt from the 3rd hole of the Wenchuan Earthquake Fault Scientific Drilling project(WFSD-3).International Journal of Earth Sciences,105(8):2253-2272.
    Li H B,Xu Z Q,Wang H,et al.2018.Fault behavior,physical properties and seismic activity of the Wenchuan earthquake fault zone:evidence from the Wenchuan earthquake Fault Scientific Drilling project(WFSD).Chinese J.Geophys.(in Chinese),61(5):-,doi:10.6038/cjg2018M0257.
    Li H Y,Zhang S H.2005.Detection of mineralogical changes in pyrite using measurements of temperature-dependence susceptibilities.Chinese Journal of Geophysics(in Chinese),48(6):1454-1461.
    Li Y,Zhou R J,Densmore A L,et al.2006.Geomorphic evidence for the late Cenozoic strike-slipping and thrusting in Longmen Mountain at the eastern margin of the Tibetan Plateau.Quaternary Sciences(in Chinese),26(1):40-51.
    Liu D L,Li H B,Lee T Q,et al.2014.Primary rock magnetism for the Wenchuan earthquake fault zone at Jiulong outcrop,Sichuan Province,China.Tectonophysics,619-620:58-69.
    Liu D L,Li H B,Lee T Q,et al.2016.Magnetic mineral characterization close to the Yingxiu-Beichuan fault surface rupture zone of the Wenchuan earthquake(MW7.9,2008)and its implication for earthquake slip processes.Journal of Asian Earth Sciences,115:468-479.
    Liu D L,Li H B,Li D G,et al.2015.Fault-rock magnetism from the earth surface trench reveals the different slip dynamics of the Wenchuan earthquake surface rupture zone.Acta Geologica Sinica(in Chinese),89(12):2250-2265.
    Liu Q S,Deng C L.2009.Magnetic susceptibility and its environmental significances.Chinese Journal of Geophysics(in Chinese),52(4):1041-1048.
    Liu Q S,Deng C L,Pan Y X.2007.Temperature-dependency and frequency-dependency of magnetic susceptibility of magnetite and maghemite and their significance for environmental magnetism.Quaternary Sciences(in Chinese),27(6):955-962.
    Liu T Y.2007.Conspectus of Geophysical Exploration(in Chinese).Beijing:Geological Publishing House.
    Liu-Zeng J,Zhang Z,Wen L,et al.2009.Co-seismic ruptures of the 12 May 2008,MS8.0 Wenchuan earthquake,Sichuan:East-west crustal shortening on oblique,parallel thrusts along the eastern edge of Tibet.Earth and Planetary Science Letters,286(3-4):355-370.
    Lowrie W,Heller F.1982.Magnetic properties of marine limestones.Reviews of Geophysics,20(2):171-192.
    Maurer J,Johnson K.2014.Fault coupling and potential for earthquakes on the creeping section of the central San Andreas Fault.Journal of Geophysical Research:Solid Earth,119(5):4414-4428.
    Mishima T,Hirono T,Nakamura N,et al.2009.Changes to magnetic minerals caused by frictional heating during the 1999Taiwan Chi-Chi earthquake.Earth Planets Space,61(6):797-801.
    Mishima T,Hirono T,Soh W,et al.2006.Thermal history estimation of the Taiwan Chelungpu fault using rock-magnetic methods.Geophysical Research Letters,33(23):L23311,doi:10.1029/2006GL028088.
    Moreau M G,Ader M,Enkin R J.2005.The magnetization of clayrich rocks in sedimentary basins:low-temperature experimental formation of magnetic carriers in natural samples.Earth and Planetary Science Letters,230(1-2):193-210.
    Niwa M,Mizuochi Y,Tanase A.2015.Changes in chemical composition caused by water-rock interactions across a strikeslip fault zone:Case study of the Atera Fault,Central Japan.Geofluids,15(3):387-409.
    Noda H,Lapusta N.2013.Stable creeping fault segments can become destructive as a result of dynamic weakening.Nature,493(7433):518-521,doi:10.1038/nature11703.
    Orlicky O.1990.Detection of magnetic carriers in rocks:Results of susceptibility changes in powdered rock samples induced by temperature.Physics of the Earth and Planetary Interiors,63(1-2):66-70.
    Pan Y X,Zhu R X,Banerjee S K,et al.2000.Rock magnetic properties related to thermal treatment of siderite:behavior and interpretation.Journal of Geophysical Research:Solid Earth,105(B1):783-794.
    Pei J L,Li H B,Sun Z M,et al.2010.Fault slip in the Wenchuan earthquake fault zone information from fault rocks with higher magnetic susceptibility.Quaternary Sciences(in Chinese),30(4):759-767.
    Pei J L,Li H B,Wang H,et al.2014a.Magnetic properties of the Wenchuan earthquake fault scientific drilling project Hole-1(WFSD-1),Sichuan Province,China.Earth,Planets and Space,66(1):23,doi:10.1186/1880-5981-66-23.
    Pei J L,Zhou Z Z,Dong S G,et al.2014b.Magnetic evidence revealing frictional heating from fault rocks in granites.Tectonophysics,637:207-217.
    Pei J L,Zhou Z Z,Li H B,et al.2016.New evidence of repeated earthquakes along Wenchuan earthquake fault zone.Geology in China(in Chinese),43(1):43-55.
    Schill E,Appel E,Gautam P.2002.Towards pyrrhotite/magnetite geothermometry in low-grade metamorphic carbonates of the Tethyan Himalayas(Shiar Khola,Central Nepal).Journal of Asian Earth Sciences,20(3):195-201.
    Sichuan Bureau of Geology and Mineral Resources.1996.Geologic Map of Mianzhu(Scale 1∶50000)(in Chinese).
    Tanikawa W,Mishima T,Hirono T,et al.2007.High magnetic susceptibility produced in high-velocity frictional tests on core samples from the Chelungpu fault in Taiwan.Geophysical Research Letters,34(5):L15304,doi:10.1029/2007GL030783.
    Tanikawa W,Mishima T,Hirono T,et al.2008.High magnetic susceptibility produced by thermal decomposition of core samples from the Chelungpu fault in Taiwan.Earth and Planetary Science Letters,272(1-2):372-381.
    Tembe S,Lockner D A,Wong T F.2010.Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges:Binary and ternary mixtures of quartz,illite,and montmorillonite.Journal of Geophysical Research Solid Earth,115(B3):B03416,doi:10.1029/2009JB006383.
    Wang H,Li H B,Janssen C,et al.2015.Multiple generations of pseudotachylyte in the Wenchuan fault zone and their implications for coseismic weakening.Journal of Structural Geology,74:159-171.
    Xu H J,Jin Z M,Mason R.2009a.Magnetic susceptibility of ultrahigh pressure eclogite:The role of retrogression.Tectonophysics,475(2):279-290.
    Xu X W,Wen X Z,Yu G H,et al.2009b.Coseismic reverse-and oblique-slip surface faulting generated by the 2008 MW7.9Wenchuan earthquake,China.Geology,37(6):515-518.
    Yamaguchi A,Cox S F,Kimura G,et al.2011.Dynamic changes in fluid redox state associated with episodic fault rupture along a megasplay fault in a subduction zone.Earth and Planetary Science Letters,302(3-4):369-377.
    Yang T,Chen J Y,Wang H Q,et al.2012a.Magnetic properties of fault rocks from the Yingxiu-Beichuan fault:Constraints on temperature rise within the shallow slip zone during the 2008Wenchuan earthquake and their implications.Journal of Asian Earth Sciences,50:52-60.
    Yang T,Chen J Y,Wang H Q,et al.2012b.Rock magnetic properties of fault rocks from the rupture of the 2008Wenchuan earthquake,China and their implications:preliminary results from the Zhaojiagou outcrop,Beichuan county(Sichuan).Tectonophysics,530-531:331-341.
    Yang T,Chen J Y,Yang X S,et al.2013.Differences in magnetic properties of fragments and matrix of breccias from the rupture of the 2008 Wenchuan earthquake,China:Relationship to faulting.Tectonophysics,601:112-124.
    Yang T,Yang X S,Duan Q B,et al.2016.Rock magnetic expression of fluid infiltration in the Yingxiu-Beichuan fault(Longmen Shan thrust belt,China).Geochemistry,Geophysics,Geosystems,17(3):1065-1085.
    Zhang C,Wang Y,Liu Y,et al.2013.Mineralogical study of magnetic susceptibility of intrusive rocks in the eastern Tibetan.Acta Mineralogica Sinica(in Chinese),(S2):868-869.
    Zhang L,Sun Z M,Li H B,et al.2017.Magnetic susceptibility of WFSD-2borehole cores from the Longmenshan thrust belt and its implications for great seismic activity.Chinese Journal of Geophysics(in Chinese),60(1):225-239,doi:10.6038/cjg20170119.
    Zhang L,Sun Z M,Li H B,et al.2017.Rock record and magnetic response to large earthquakes within Wenchuan Earthquake Fault Scientific Drilling cores.Geochemistry,Geophysics,Geosystems,18(5):1889-1906.
    Zhang P Z,Wen X Z,Shen Z K,et al.2010.Oblique,high-angle,listric-reverse faulting and associated development of strain:the Wenchuan earthquake of May 12,2008,Sichuan,China.Annual Review of Earth and Planetary Sciences,38(1):353-382.
    Zhang X L.1991.The magnetic susceptibility,iron and magnetite content of Precambrian rocks in Finland.Foreign Geoexploration Technology(in Chinese),(9):22.
    郎元强,胡大千,刘畅等.2011.南海北部陆区岩石磁化率的矿物学研究.地球物理学报,54(2):573-587,doi:10.3969/j.issn.0001-5733.2011.02.037.
    李海兵,付小方,Van der Woerd J等.2008.汶川地震(MS8.0)地表破裂及其同震右旋斜向逆冲作用.地质学报,82(12):1623-1643.
    李海兵,许志琴,王焕等.2018.汶川地震断裂带滑移行为、物理性质及其大地震活动性---来自汶川地震断裂带科学钻探的证据.地球物理学报,61(5):-,doi:10.6038/cjg2018M0257.
    李海燕,张世红.2005.黄铁矿加热过程中的矿相变化研究---基于磁化率随温度变化特征分析.地球物理学报,48(6):1384-1391.
    李勇,周荣军,Densmore A L等.2006.青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志.第四纪研究,26(1):40-51.
    刘栋梁,李海兵,李德贵等.2015.地表探槽断裂岩岩石磁学揭示汶川地震断裂带不同滑移机制.地质学报,89(12):2250-2265.
    刘青松,邓成龙.2009.磁化率及其环境意义.地球物理学报,52(4):1041-1048.
    刘青松,邓成龙,潘永信.2007.磁铁矿和磁赤铁矿磁化率的温度和频率特性及其环境磁学意义.第四纪研究,27(6):955-962.
    刘天佑.2007.地球物理勘探概论.北京:地质出版社.
    裴军令,李海兵,孙知明等.2010.汶川地震断裂带断层滑移作用---来自高磁化率断层岩的信息.第四纪研究,30(4):759-767.
    裴军令,周在征,李海兵等.2016.汶川地震断裂带多次地震活动新证据.中国地质,43(1):43-55.
    四川省地矿局.1996.绵竹幅地质图(1∶50000).
    张川,王赟,刘云等.2013.藏东地区侵入岩磁化率的矿物学研究.矿物学报,(S2):868-869.
    张蕾,孙知明,李海兵等.2017.龙门山构造带wfsd-2钻孔岩心磁化率特征及其对大地震活动的响应.地球物理学报,60(1):225-239,doi:10.6038/cjg20170119.
    张锡濂.1991.芬兰前寒武纪岩石的磁化率、铁及磁铁矿含量.国外地质勘探技术,(9):22.(本文编辑张正峰)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700