炎症诱导嗅鞘胶质细胞应激功能障碍的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in Research on Stress Dysfunction of Olfactory Ensheathing Glia Induced by Inflammation
  • 作者:何毛伟 ; 段艳廷 ; 张亚伟 ; 徐立斌 ; 陈钦润 ; 陈建梅
  • 英文作者:HE Maowei;DUAN Yanting;ZHANG Yawei;Bengbu Medical College,Affiliated Fuzhou General Hospital;
  • 关键词:嗅鞘胶质细胞 ; 炎症应激 ; 神经损伤 ; 修复 ; 病理机制
  • 英文关键词:Olfactory ensheathing glial cells;;Inflammatory stress;;Nerve injury;;Repair;;Pathological mechanism
  • 中文刊名:YJZY
  • 英文刊名:Chinese and Foreign Medical Research
  • 机构:蚌埠医学院福总教学医院;中国人民解放军联勤保障部队第九○○医院;
  • 出版日期:2019-07-05
  • 出版单位:中外医学研究
  • 年:2019
  • 期:v.17;No.423
  • 基金:全军后勤科研计划重大专项课题项目(项目编号:AWS14C003-5)
  • 语种:中文;
  • 页:YJZY201919083
  • 页数:4
  • CN:19
  • ISSN:23-1555/R
  • 分类号:187-190
摘要
神经损伤在临床上很常见,外科技术的发展已经在很大程度上提高了修复的质量,但修复的效果仍然不理想。嗅鞘胶质细胞是极少数的中枢神经系统可以再生的细胞之一,具有很强的促进神经修复再生和神经髓鞘化的能力,它的发现为神经系统再生医学领域带来了新的希望。然而,炎症应激下,嗅鞘胶质细胞的活性降低或发生死亡,明确嗅鞘胶质细胞在炎症条件下细胞死亡的具体病理分子过程非常重要。本文对近年来的最新研究进展进行综述,并且对存在的问题提出讨论和假设。
        Nerve damage is very common in the clinic.The development of surgical techniques has greatly improved the quality of repair,but the effect of repair is still not ideal.Olfactory ensheath glial cells are one of the few cells that can be regenerated by the central nervous system.They have strong ability to promote nerve repair regeneration and neuro myelination.Its findings have brought new hope to the field of neurological regenerative medicine.However,under inflammatory stress,the activity of olfactory ensheathing glial cells is reduced or killed,and it is important to understand the specific pathological molecular processes of olfactory ensheathing glial cells under inflammatory conditions.This paper reviews the latest research progress in recent years and discusses and hypotheses the existing problems.
引文
[1]Ramón-Cueto A,Avila J.Olfactory ensheathing glia:properties and function[J].Brain Research Bulletin,1998,46(3):175-187.
    [2]Yao R,Murtaza M,Velasquez J T,et al.Olfactory Ensheathing Cells for Spinal Cord Injury:Sniffing Out the Issues[J].Cell Transplantation,2018,27(6):879-889.
    [3]Matthew B,James J,Mary C,et al.The Glia Response after Peripheral Nerve Injury:A Comparison between Schwann Cells and Olfactory Ensheathing Cells and Their Uses for Neural Regenerative Therapies[J].International Journal of Molecular Sciences,2017,18(2):287.
    [4]Augestad I L,Nyman A K G,Costa A I,et al.Effects of Neural Stem Cell and Olfactory Ensheathing Cell Co-transplants on Tissue Remodelling After Transient Focal Cerebral Ischemia in the Adult Rat[J].Neurochemical Research,2017,42(6):1599-1609.
    [5]O’Neill P,Lindsay S L,Pantiru A,et al.Sulfatase-Mediated Manipulation of the Astrocyte-Schwann Cell Interface[J].Glia,2016,65(1):19-33.
    [6]Cao L,Mu L,Qiu Y,et al.Diffusible,membrane-bound,and extracellular matrix factors from olfactory ensheathing cells have different effects on the self-renewing and differentiating properties of neural stem cells[J].Brain Research,2010,1359:56-66.
    [7]Tan A M,Zhang W,Levine J M.NG2:a component of the glial scar that inhibits axon growth[J].Journal of Anatomy,2005,207(6):717-725.
    [8]Chehrehasa F,Ekberg J A K,St John J A.A novel method using intranasal delivery of EdU demonstrates that accessory olfactory ensheathing cells respond to injury by proliferation[J].Neuroscience Letters,2014,563:90-95.
    [9]Nan B,Getchell M L,Partin J V,et al.Leukemia inhibitory factor,interleukin-6,and their receptors are expressed transiently in the olfactory mucosa after target ablation[J].Journal of Comparative Neurology,2001,435(1):60-77.
    [10]Lane A P,Turner J,May L,et al.A Genetic Model of Chronic Rhinosinusitis-Associated Olfactory Inflammation Reveals Reversible Functional Impairment and Dramatic Neuroepithelial Reorganization[J].Journal of Neuroscience,2010,30(6):2324-2329.
    [11]Jinbo L,Zhiyuan L,Zhijian Z,et al.Olfactory Ensheathing CellConditioned Medium Protects Astrocytes Exposed to Hydrogen Peroxide Stress[J].Cellular&Molecular Neurobiology,2013,33(5):699-705.
    [12]Li Y,Zou T,Xue L,et al.TGF-β1 enhances phagocytic removal of neuron debris and neuronal survival by olfactory ensheathing cells,via,integrin/MFG-E8 signaling pathway[J].Molecular and Cellular Neuroscience,2017,85:45-56.
    [13]Wright A A,Todorovic M,Tello-Velasquez J,et al.Enhancing the Therapeutic Potential of Olfactory Ensheathing Cells in Spinal Cord Repair Using Neurotrophins[J].Cell Transplantation,2018,27(6):867-878.
    [14]Liu Q,Qin Q,Sun H,et al.Neuroprotective effect of olfactory ensheathing cells co-transfected with Nurr1 and Ngn2 in both in vitro and in vivo models of Parkinson’s disease[J].Life Sciences,2018,194:168-176.
    [15]Lei Q,Tan J,Yi S,et al.Mitochonic acid 5 activates the MAPK-ERK-yap signaling pathways to protect mouse microglial BV-2 cells against TNFα-induced apoptosis via increased Bnip3-related mitophagy[J].Cellular&Molecular Biology Letters,2018,23(1):14.
    [16]Hunter R,Ojha U,Bhurtel S,et al.Lipopolysaccharide-induced functional and structural injury of the mitochondria in the nigrostriatal pathway[J].Neuroscience Research,2017,114:62-69.
    [17]Kaizaki A,Tien L T,Pang Y,et al.Celecoxib reduces brain dopaminergic neuronaldysfunction,and improves sensorimotor behavioral performance in neonatal rats exposed to systemic lipopolysaccharide[J].Journal of Neuroinflammation,2013,10(1):1-14.
    [18]Noh H,Jeon J,Seo H.Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain[J].Neurochemistry International,2014,69:35-40.
    [19]Santuy A,Turégano-López M,Rodríguez J R,et al.A Quantitative Study on the Distribution of Mitochondria in the Neuropil of the Juvenile Rat Somatosensory Cortex[J].Cerebral Cortex,2018,28(10):3673-3684.
    [20]Jung-Hwa T C.Stimulation-induced structural changes at the nucleus,endoplasmic reticulum and mitochondria of hippocampal neurons[J].Molecular Brain,2018,11(1):44.
    [21]Ruibing L,Ting X,Dandan L,et al.Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease:The role of the ERK-CREBpathway and Bnip3-mediated mitophagy[J].Redox Biology,2018,18:229-243.
    [22]Zhou H,Wang S,Hu S,et al.ER-Mitochondria Microdomains in Cardiac Ischemia-Reperfusion Injury:A Fresh Perspective[J].Frontiers in Physiology,2018,9:755.
    [23]Hao Z,Jin W,Pingjun Z,et al.NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α[J].Basic Research in Cardiology,2018,113(4):23.
    [24]Zhu P,Hu S,Jin Q,et al.Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury:A mechanism involving calcium overload/XO/ROS/mPTP pathway[J].Redox Biology,2018,16:157-168.
    [25]Cui J,Li Z,Zhuang S,et al.Melatonin alleviates inflammation-induced apoptosis in human umbilical vein endothelial cells via suppression of Ca2+-XO-ROS-Drp1-mitochondrial fission axis by activation of AMPK/SERCA2a pathway[J].Cell Stress Chaperones,2018,23(2):281-293.
    [26]Zhou H,Du W,Li Y,et al.Effects of melatonin on fatty liver disease:the role of NR4A1/DNA-PKcs/p53 pathway,mitochondrial fission and mitophagy[J].Journal of Pineal Research,2017,64(1):229-243.
    [27]Junqin Sheng,Hongyan Li,Qin Dai,et al.DUSP1 recuses diabetic nephropathy via repressing JNK-Mff-mitochondrial fission pathways[J].Journal of Cellular Physiology,2019,234(3):3043-3057.
    [28]Mcfarland A J,Davey A K,Mcdermott C M,et al.Differences in statin associated neuroprotection corresponds with either decreased production of IL-1βor TNF-αin an in vitro model of neuroinflammation-induced neurodegeneration[J].Toxicology&Applied Pharmacology,2018,344:56-73.
    [29]Chen W J,Du J K,Hu X,et al.Protective effects of resveratrol on mitochondrial function in the hippocampus improves inflammationinduced depressive-like behavior[J].Physiology&Behavior,2017,182:54-61.
    [30]Zhou H,Zhang Y,Hu S,et al.Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis[J].Journal of Pineal Research,2017,63:e12413.
    [31]Li H,He F,Zhao X,et al.YAP Inhibits the Apoptosis and Migration of Human Rectal Cancer Cells via Suppression of JNK-Drp1-Mitochondrial Fission-HtrA2/Omi Pathways[J].Cellular Physiology and Biochemistry:International Journal of Experimental Cellular Physiology,Biochemistry,and Pharmacology,2017,44(5):2073-2089.
    [32]Jing X,Yang J,Jiang L,et al.MicroRNA-29b Regulates the Mitochondria-Dependent Apoptotic Pathway by Targeting Bax in Doxorubicin Cardiotoxicity[J].Cellular Physiology and Biochemistry:International Journal of Experimental Cellular Physiology,Biochemistry,and Pharmacology,2018,48(2):692-704.
    [33]Cho B B.Caspase-independent programmed cell death following ischemic stroke[J].Journal of Investigative Surgery:the Official Journal of the Academy of Surgical Research,2008,21(3):141-147.
    [34]Prabhakaran K,Chapman G D.BNIP3 up-regulation and mitochondrial dysfunction in manganese-induced neurotoxicity[J].Neurotoxicology,2009,30(3):414-422.
    [35]Zhao S T,Chen M,Li S J,et al.Mitochondrial BNIP3 upregulation precedes endonuclease G translocation in hippocampal neuronal death following oxygen-glucose deprivation[J].BMC Neuroscience,2009,10(1):113.
    [36]Rigillo G,Vilella A,Benatti C,et al.LPS-induced histone H3phospho(Ser10)-acetylation(Lys14)regulates neuronal and microglial neuroinflammatory response[J].Brain,Behavior,and Immunity,2018,74:277-290.
    [37]Errea O,Moreno B,Gonzalez-Franquesa,et al.The disruption of mitochondrial axonal transport is an early event in neuroinflammation[J].Journal of Neuroinflammation,2015,12(1):152.
    [38]Ho D H,Je A R,Lee H,et al.LRRK2 Kinase Activity Induces Mitochondrial Fission in Microglia via Drp1 and Modulates Neuroinflammation[J].Experimental Neurobiology,2018,27(3):171-180.
    [39]Zuo W Q,Hu Y J,Yang Y,et al.Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model[J].Journal of Neuroinflammation,2015,12(1):105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700