Tim-3对巨噬细胞葡萄糖转运体1表达的调节机制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Roles and mechanism of Tim-3 in regulating the expression of glucose transporter 1in macrophages
  • 作者:张嘉诚 ; 李葛 ; 窦帅杰 ; 刘艺琼 ; 侯春梅 ; 韩根成
  • 英文作者:ZHANG Jia-cheng;LI Ge;DOU Shuai-jie;LIU Yi-qiong;HOU Chun-mei;HAN Gen-cheng;Department of Neuro-immunology and Antibody Engineering,Institute of Military Cognition and Brain Sciences,Academy of Military Medical Sciences, Academy of Military Sciences;Department of Interventional Medicine,the 6thAffiliated Medical Center,General Hospital of PLA;
  • 关键词:Tim-3 ; 巨噬细胞 ; 葡萄糖转运体1 ; 肿瘤坏死因子α
  • 英文关键词:Tim-3;;macrophages;;glucose transporter type 1;;tumor necrosis factor-alpla
  • 中文刊名:JSYX
  • 英文刊名:Military Medical Sciences
  • 机构:军事科学院军事医学研究院军事认知与脑科学研究所神经免疫与抗体工程研究室;解放军总医院第六医学中心介入医学科;
  • 出版日期:2018-07-25
  • 出版单位:军事医学
  • 年:2018
  • 期:v.42;No.254
  • 基金:国家自然科学基金资助项目(81471540,81771684)
  • 语种:中文;
  • 页:JSYX201807014
  • 页数:6
  • CN:07
  • ISSN:11-5950/R
  • 分类号:40-44+50
摘要
目的探讨T细胞免疫球蛋白及黏蛋白结构域分子-3(T cell immunoglobulin and mucin-domain containing molecule-3,Tim-3)对巨噬细胞葡萄糖转运体1(glucose transporter 1,GLUT1)的表达及其对细胞功能的影响,并初步探索其影响机制。方法使用Tim-3 siRNA敲低Raw264. 7细胞系观察GLUT1蛋白的表达,随后使用不同浓度Tim-3融合蛋白、Tim-3激动抗体,阻断和激活小鼠源巨噬细胞系Raw264. 7,在基因和蛋白水平观察GLUT1、甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)、Tim-3以及肿瘤坏死因子α(tumor necrosis factor-α,TNF-α) 4项指标的变化。结果 Tim-3敲低的Raw264. 7细胞系GLUT1蛋白表达水平明显升高;激活、抑制巨噬细胞Tim-3信号能分别抑制和促进GLUT1、TNF-α的基因和蛋白表达以及GAPDH基因表达,但Tim-3的基因和蛋白水平以及GAPDH蛋白水平并无显著变化。结论 Tim-3负调控巨噬细胞GLUT1表达,进一步影响TNF-α分泌,参与TNF-α转录后调控的GAPDH可能参与其中的调节机制。
        Objective To explore the roles and mechanisms of T cell immunoglobulin and mucin-domain containing molecule-3( Tim-3) in regulating the expression of glucose transporter 1( GLUT1) in macrophages. Methods GLUT1 protein expressions were analyzed in Raw 264. 7 treated with Tim-3 siRNA. And then,Raw 264. 7 was administered with various concentrations of Tim-3 activating antibody and blocking fusion protein to observe the mRNA and protein characteristics of GLUT1,glyceraldehyde-3-phosphate dehydrogenase( GAPDH),Tim-3 and TNF-α. Results The mRNA expressions of GLUT1,GAPDH,TNF-α were up-regulated/down-regulated in Raw 264. 7 when treated with Tim-3 blocking fusion protein/activating antibody,while the results of Tim-3 showed changes that were not of statistical significance. The protein expressions of GLUT1、TNF-α in macrophages were found to be the same as the quantitative real-time PCR( qRTPCR) results,while the changes in GAPDH and Tim-3 protein levels were not statistically significant. Conclusion Tim-3 plays a negative regulation role in GLUT1 and TNF-α expression of macrophages. Furthermore,GAPDH binding to TNF-α mRNA which contributes to posttranscriptional repression may be involved in the process of TNF-α secretion by macrophages.
引文
[1]Anderson AC,Anderson DE,Bregoli L,et al.Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells[J].Science,2007,318(5853):1141-1143.
    [2]Mcintire JJ,Umetsu SE,Akbari O,et al.Identification of Tapr(an airway hyperreactivity regulatory locus)and the linked Tim gene family[J].Nat Immunol,2001,2(12):1109-1116.
    [3]Zhu C,Anderson AC,Schubart A,et al.The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity[J].Na Immunol,2005,6(12):1245-1252.
    [4]Sanchez-Fueyo A,Tian J,Picarella D,et al.Tim-3 inhibits Thelper type 1-mediated auto-and alloimmune responses and promotes immunological tolerance[J].Nat Immunol,2003,4(11):1093-1101.
    [5]Sabatos CA,Chakravarti S,Cha E,et al.Interaction of Tim-3and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance[J].Nat Immunol,2003,4(11):1102-1110.
    [6]Liu J,Zhang S,Hu Y,et al.Targeting PD-1 and Tim-3 pathways to reverse CD8 T-cell exhaustion and enhance ex vivo T-cell responses to autologous dendritic/tumor vaccines[J].J Immunother,2016,39(4):171-180.
    [7]Zhang Y,Ma CJ,Wang JM,et al.Tim-3 negatively regulates IL-12 expression by monocytes in HCV infection[J].PLo S One,2011,6(5):1-14.
    [8]Zhang Y,Ma CJ,Wang JM,et al.Tim-3 regulates pro-and anti-inflammatory cytokine expression in human CD14+monocytes[J].J Leukoc Biol,2012,91(2):189-196.
    [9]Mueckler M,Thorens B.The SLC2(GLUT)family of membrane transporters[J].Mol Aspects Med,2013,34(3):121-138.
    [10]Pandeti S,Arha D,Mishra A,et al.Glucose uptake stimulatory potential and antidiabetic activity of the Arnebin-1 from Arnabia nobelis[J].Eur J Pharmacol,2016,789(3):449-457.
    [11]Yan J,Young ME,Cui L,et al.Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity[J].Circulation,2009,119(2):2818-2828.
    [12]Ancey PB,Contat C,Meylan E.Glucose transporters in cancer:from tumor cells to the tumor microenvironment[J].FEBS J,2018,12(6):21-25.
    [13]Wegiel B,Vuerich M,Daneshmandi S,et al.Metabolic switch in the tumor microenvironment determines immune responses to anti-cancer therapy[J].Front Oncol,2018,8(2):284.
    [14]Yang M,Mckay D,Pollard JW,et al.Diverse functions of macrophages in different tumor microenvironments[J].Cancer Res,2018,78(19):5492-5503.
    [15]Martinez FO,Helming L,Gordon S.Alternative activation of macrophages:an immunologic functional perspective[J].Annu Rev Immunol,2009,27:451-483.
    [16]Pelgrom LR,Everts B.Metabolic control of type 2 immunity[J].Eur J Immunol,2017,47(8):1266-1275.
    [17]Wenes M,Shang M,Di Matteo M,et al.Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis[J].Cell Metab,2016,24(5):701-715.
    [18]Rodriguez-Fandino OA,Hernandez-Ruiz J,Lopez-Vidal Y,et al.Maturation phenotype of peripheral blood monocyte/macrophage after stimulation with lipopolysaccharides in irritable bowel syndrome[J].J Neurogastroenterol Motil,2017,23(2):281-288.
    [19]Jahangier ZN,Jacobs JW,Kraan MC,et al.Pretreatment macrophage infiltration of the synovium predicts the clinical effect of both radiation synovectomy and intra-articular glucocorticoids[J].Ann Rheum Dis,2006,65(10):1286-1292.
    [20]Jiang X,Zhou T,Xiao Y,et al.Tim-3 promotes tumor-promoting M2 macrophage polarization by binding to STAT1 and suppressing the STAT1-miR-155 signaling axis[J].Oncoimmunology,2016,5(9):1-12.
    [21]Verdeguer F,Aouadi M.Macrophage heterogeneity and energy metabolism[J].Exp Cell Res,2017,360(1):35-40.
    [22]Nagy E,Rigby WF.GAPDH selectively binds AU-rich RNA in the NAD(+)-binding region[J].J Biol Chem,1995,270(6):2755-2763
    [23]Ikeda Y,Yamaji R,Irie K,et al.Glyceraldehyde-3-phosphate dehydrogenase regulates cyclooxygenase-2 expression by targeting mRNA stability[J].Arch Biochem Biophys,2012,528(2):141-147.
    [24]Zhou Y,Yi X,Stoffer JB,et al.The multifunctional protein glyceraldehyde-3-phosphate dehydrogenase is both regulated and controls colony-stimulating factor-1 messenger RNA stability in ovarian cancer[J].Mol Cancer Res,2008,6(8):1375-1384.
    [25]Millet P,Vachharajani V,Mcphail L,et al.GAPDH binding to TNF-alpha mRNA contributes to posttranscriptional repression in monocytes:a novel mechanism of communication between inflammation and metabolism[J].J Immunol,2016,196(6):2541-1551.
    [26]张嘉诚,韩根成.巨噬细胞代谢重塑与功能调控研究进展[J].国际免疫学杂志,2018,41(2):195-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700