纳米纤维对乳清浓缩蛋白凝胶形成的诱导作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Induction Effect of Nano-fibril on the Gels of Whey Protein
  • 作者:李波杨 ; 徐红华 ; 王楠楠 ; 董世荣 ; 张立钢
  • 英文作者:Li Boyang;Xu Honghua;Wang Nannan;Dong Shirong;Zhang Ligang;Department of Food Quality & Safety, College of Food, Northeast Agricultural University;
  • 关键词:乳清浓缩蛋白 ; 凝胶 ; 质构 ; 纳米纤维 ; 作用力
  • 英文关键词:whey protein concentration;;gels;;textural properities;;nano-fibril;;driving force
  • 中文刊名:ZGSP
  • 英文刊名:Journal of Chinese Institute of Food Science and Technology
  • 机构:东北农业大学食品学院食品质量与安全系;
  • 出版日期:2018-04-30
  • 出版单位:中国食品学报
  • 年:2018
  • 期:v.18
  • 基金:国家自然科学基金项目(31471682)
  • 语种:中文;
  • 页:ZGSP201804012
  • 页数:6
  • CN:04
  • ISSN:11-4528/TS
  • 分类号:85-90
摘要
乳清浓缩蛋白纳米纤维是在特定条件下蛋白质自组装形成的一种独特的聚合结构,探讨纳米纤维对乳清浓缩蛋白胶凝性的诱导作用,将常规乳清浓缩蛋白(p H 6.5和p H 2.0)和乳清浓缩蛋白纤维聚合物分别以相同比例混入乳清浓缩蛋白形成凝胶,比较质构特性、微观结构以及作用力的差异。结果表明,在乳清浓缩蛋白中混入该蛋白纳米纤维聚合物可大大缩短凝胶时间,使凝胶时间从10 h(混入常规乳清浓缩蛋白)降至3 h,凝胶硬度与常规乳清浓缩蛋白相比下降31.16%(p H 2.0)和17.05%(p H 6.5),黏度分别升高0.8倍(p H 2.0)和1.5倍(p H 6.5)。纤维聚合物加速乳清浓缩蛋白在纤维表面的聚集,促进β-折叠结构的增加,这种聚集的驱动力主要依赖于疏水相互作用的非共价键,而共价键的作用非常微弱。
        The nano-fibril of whey protein concentration(WPC) was a unique protein aggregation structure with self-assembly at specified conditions. The nanofibrils induced gels of WPC were investigated. The textural properties, microstructures and the main forces of WPC gels with mixing nanofibrils or nature WPC were different at p H 2.0 and p H6.5. The results showed that compared to the control samples, the gel time was shorter from 10 h to 3 h when WPC mixed nano-fibril aggregates, the gel hardness decreased 31.16%(p H 2.0) and 17.05%(p H 6.5) and the viscosity increased 0.8(p H 2.0) and 1.5(p H 6.5) times, respectively. The WPC was accelerated aggregation on the nano-fibril surface and increasing the β-sheet structure level. The driving force of nanofibril-induced gels of WPC was mainly from non-covalent bond such as the hydrophobic interactions and the covalent bond was very weak.
引文
[1]MUDGAL P,DAUBERT C R,FOEGEDING E A.Cold-set thickening mechanism ofβ-lg at low p H:concentration effects[J].Food Hydrocolloids,2009,23(7):1762-1770.
    [2]DAMODARAN S,PARAF A.Food proteins and their applications[M].New York:Marcel Dekker,1997:473-487.
    [3]DURAND D,GIMEL J C,NICOLAI T.Aggregation,gelation and phase separation of heat denatured globular proteins[J].Physica A:Statistical Mechanics and its Applications,2002,304(1):253-265.
    [4]PICONE C S F,TAKEUCHI K P,CUNHA R L.Heat-induced whey protein gels:Effects of p H and the addition of sodium caseinate[J].Food Biophysics,2011,6(1):77-83.
    [5]NICOLAI T,DURAND D.Controlled food protein aggregation for new functionality[J].Current Opinion in Colloid&Interface Science,2013,18(4):249-256.
    [6]KHURANA R,IONESCU-ZANETTI C.General model for amyloid fibril assembly based on morphological studies using atomic force microscopy[J].Biophysical Journal,2003,85(2):1135-1144.
    [7]王晶,徐红华.乳清浓缩蛋白纳米纤维的制备及其界面性质[J].中国乳品工业,2013,41(4):19-22.
    [8]XIONG Y L.Influence of p H and ionic environment on thermal aggregation of whey proteins[J].Journal of Agricul tural and Food Chemistry,1992,40(3):380-384.
    [9]JU Z Y,KILARA A.Aggregation induced by calcium chloride and subsequent thermal gelation of whey protein isolate[J].Journal of Dairy Science,1998,81(4):925-931.
    [10]SHIMADA K,CHEFTEL J C.Texture characteristics,protein solubility,and sulfhydryl group/disulfide bond con tents of heat-induced gels of whey protein isolate[J].Journal of Agricultural and Food Chemistry,1988,36(5):1018-1025.
    [11]HAMANN D.Methods for measurement of rheological changes during thermally induced gelation of proteins[J].Food Technology(USA),1987,41(3):100
    [12]PATOCKA G,CERVENKOVA R,NARINE S,et al.Rheological behaviour of dairy products as affected by soluble whey protein isolate[J].International Dairy Journal,2006,16(5):399-405.
    [13]BOYE J I,ALLI I,ISMAIL A A,et al.Factors affecting molecular characteristics of whey protein gelation[J].In ternational Dairy Journal,1995,5(4):337-353.
    [14]BRINK J,LANGTON M,STADING M,et al.Simultaneous analysis of the structural and mechanical changes dur ing large deformation of whey protein isolate/gelatin gels at the macro and micro levels[J].Food Hydrocolloids,2007,21(3):409-419.
    [15]CYNTHIS A,ATZE J V D G.Formation of fibrillar whey protein aggregates:Influence of heat and shear treatment,and resulting rheology[J].Food Hydrocolloids,2008,22(7):1315-1325.
    [16]SUZAME G,BOLDER ASTRID J.Heat-induced whey protein isolate fibrils:Conversion,hydrolysis,and disulphide bond formation[J].International Dairy Journal,2007,17(7):846-853.
    [17]KO S,GUNASEKARAN S.Preparation of sub-100-nmβ-lactoglobulin(BLG)nanoparticles[J].Journal of Microencapsulation,2006,23(8):887-898.
    [18]KREBS M R H,DEVLIN G L,DONALD A M.Amyloid fibril-like structure underlies the aggregate structure across the p H range forβ-lactoglobulin[J].Biophysical Journal,2009,96(12):5013-5019.
    [19]HAYAKAWA S,NAKAI S.Relationships of hydrophobicity and net charge to the solubility of milk and soy proteins[J].Journal of Food Science,1985,50(2):486-491.
    [20]STIEGER M,RICHTERING W,PEDERSEN J S,et al.Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids[J].The Journal of Chemical Physics,2004,120(13):6197-6206.
    [21]WANG J,ZHAO M,YANG X,et al.Improvement on functional properties of wheat gluten by enzymatic hydrolysis and ultrafiltration[J].Journal of Cereal Science,2006,44(1):93-100.
    [22]INDBERGA D J,WRANNEB M S,GILBERT G M,et al.Steady-state and time-resolved Thioflavin-T fluorescence can report on morphological differences in amyloid fibrils formed by Aβ(1-40)and Aβ(1-42)[J].Biochemical and Biophysical Research Communications,2015,458(2):418-423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700