磷铁摩尔比对磷酸铁结构及其催化转化2,3-丁二醇性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of P / Fe molar ratio on structure and catalytic activity of iron phosphate for 2,3-butanediol transformation
  • 作者:董云海 ; 赵锦波 ; 彭钢 ; 余定华
  • 英文作者:DONG Yunhai;ZHAO Jinbo;PENG Gang;YU Dinghua;College of Biotechnology and Pharmaceutical Engineering,Nanjing Tech University;
  • 关键词:磷酸铁 ; 2 ; 3-丁二醇 ; 脱水 ; 断裂 ; 脱氢
  • 英文关键词:iron phosphate;;2,3-butanediol;;dehydration;;cleavage;;dehydrogenation
  • 中文刊名:NHXB
  • 英文刊名:Journal of Nanjing Tech University(Natural Science Edition)
  • 机构:南京工业大学生物与制药工程学院;
  • 出版日期:2016-07-15
  • 出版单位:南京工业大学学报(自然科学版)
  • 年:2016
  • 期:v.38;No.177
  • 基金:国家自然科学基金(21376120)
  • 语种:中文;
  • 页:NHXB201604010
  • 页数:8
  • CN:04
  • ISSN:32-1670/N
  • 分类号:55-61+82
摘要
通过水热合成方法制备一系列不同摩尔比的磷酸铁催化剂,测试了其催化转化2,3-丁二醇的性能。利用X线衍射(XRD)、NH_3程序升温脱附(NH_3-TPD)、H_2程序升温还原(H2-TPR)、傅里叶变换红外光谱(FT-IR)、热质量-差热分析法(TG-DTA)及N2吸附-脱附等手段表征催化剂的结构和表面性质。实验发现,低磷铁比催化剂转化2,3-丁二醇的主要产物为氧化断裂产物乙醛,而高磷铁比催化剂的主要产物则为脱水产物丁酮。表征结果表明,低磷铁比FePO_4有着更强的表面氧化还原活性和较弱的表面酸性,随着磷铁摩尔比升高,催化剂表面酸性得到增强而氧化还原性减弱。提出了一种2,3-丁二醇在酸性与氧化还原性双功能催化剂上的转化机制。
        A series of iron phosphate catalysts with different P / Fe molar ratios prepared with hydrothemal synthesis method were used to test the effects on 2,3-butanediol transformation. The catalyst structures and surface properties were characterized by several physico-chemical methods,including X-ray diffraction( XRD),NH3temperature-programmed desorption( NH_3-TPD),H_2 temperature-programmed reduction( H_2-TPR),Furier transform infrared spectroscopy( FT-IR),thermagravimetry-differential thermal analysis( TG-DTA),and N_2 adsorption-desorption. The catalysts with lower P / Fe molar ratios could catalyze the cracking reaction of 2,3-butanediol to aldehyde,while the catalysts with higher P / Fe molar ratios could catalyze the dehydration reaction of 2,3-butanediol to butanone. The characterization results showed that the catalysts with lower P / Fe ratios had stronger oxidation activity and weaker acidity,and the surface acidity of catallysts could be enhanced and the surface redox properties decreased with the increase of phosphate content. A transformation mechanism of 2,3-butanediol on solid acid and redox catalysts was proposed.
引文
[1]杨昀.美国石油危机应对机制及其对我国的启示[J].国际石油经济,2007,2:13.
    [2]谭天伟,苏海佳,杨晶.生物基材料产业化进展[J].中国材料进展,2012,31(2):1.
    [3]SHAO P,KUMAR A.Recovery of 2,3-butanediol from water by a solvent extraction and pervaporation separation scheme[J].Journal of membrane science,2009,329(1/2):160.
    [4]NEISH A C,HASKELL V C,Macdonald F J.Production and properties of 2,3-butanediolⅥDehydration by sulfuric acid[J].Canadian journal of research,1945,23(6):281.
    [5]ZHANG W,G YU D H,JI X J,et al.Efficient dehydration of biobased 2,3-butanediol to butanone over boric acid modified HZSM-5 zeolites[J].Green chemistry,2012,14(12):3441.
    [6]BLOM R H.Configuration of acetylmethylcarbinol[J].Journal of the American chemical society,1945,67(3):494.
    [7]ISAGULYANTS G V,BELOMESTNYKH I P.Butadione synthesis by dehydrogenation and oxidative dehydrogenation of 2,3-butanediol[J].Studies in surface science and catalysis,1997,108:415.
    [8]AI M.Catalytic activity of palladium-doped iron phosphate in the oxidative dehydrogenation of lactic acid to pyruvic acid[J].Applied catalysis A:general,2002,232(1/2):1.
    [9]NAGAI H.Preparation of butadiene from 1,3-butylene glycol by vapor-phase dehydration[J].Kogyo kagaku zasshi,1942,45:187.
    [10]AI M,OHDAN K.Effects of differences in the structures of iron phosphates on the catalytic action in the oxidative dehydrogenation of lactic acid to pyruvic acid[J].Applied catalysis A:general,1997,165(1):461.
    [11]AI M,OHDAN K.Formation of glyoxylic acid by oxidative dehydrogenation of glycolic acid[J].Bulletin of the chemical society of Japan,1997,70(8):1995.
    [12]AI M.Formation of glyoxal by oxidative dehydrogenation of ethylene glycol[J].Bulletin of the chemical society of Japan,2002,75(2):375.
    [13]AI M.Oxidation activity of iron phosphate and its characters[J].Catalysis today,2003,85(2):193.
    [14]AI M.Catalytic activity of iron phosphate doped with a small amount of molybdenum in the oxidative dehydrogenation of lactic acid to pyruvic acid[J].Applied catalysis A:general,2002,234(1/2):235.
    [15]章文贵,赵锦波,胡燚,等.Y分子筛催化2,3-丁二醇脱水响应面优化[J].南京工业大学学报(自然科学版),2014,36(1):39.
    [16]SONG Y,ZAVALIJ P Y,SUZUKI M,et al.New iron(Ⅲ)phosphate phases:crystal structure and electrochemical and magnetic properties[J].Inorganic chemistry,2002,41(22):5778.
    [17]NAGARAJU P,SRILAKSHMI C,PASHA N,et al.Effect of P/Fe ratio on the structure and ammoxidation functionality of Fe-PO catalysts[J].Applied catalysis A:general,2008,334(1):10.
    [18]SAMUNEVA B,TZVETKOVA P,GUGOV I,et al.Structural studies of phosphate glasses[J].Journal of materials science letters,1996,15(24):2180.
    [19]STOCH P,SZCZERBA W,BODNAR W,et al.Structural properties of iron-phosphate glasses:spectroscopic studies and ab initio simulations[J].Physical chemistry chemical physics,2014,16(37):19917.
    [20]MILLET J M M.Fe PO catalysts for the selective oxidative dehydrogenation of isobutyric acid into methacrylic acid[J].Catalysis reviews,1998,40(1/2):1.
    [21]BISWAS S,MAITI S,JANA U.An efficient iron-catalyzed carbon-carbon single-bond cleavage via retro-claisen condensation:a mild and convenient approach to synthesize a variety of esters or ketones[J].European journal of organic chemistry,2010(15):2861.
    [22]WANG A,JIANG H.Palladium-catalyzed direct oxidation of alkenes with molecular oxygen:general and practical methods for the preparation of 1,2-diols,aldehydes,and ketones[J].The journal of organic chemistry,2010,75(7):2321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700