准南煤田大泉湖火区地表温度反演及时空变化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of the chang characteristics of time and space and inversing of surface temperature of Daquanhu coal fire in south Junggar coalfield
  • 作者:董敬宣 ; 曾强 ; 李根生 ; 赵龙辉
  • 英文作者:DONG Jingxuan;ZENG Qiang;LI Gensheng;ZHAO Longhui;School of Resource and Environment Sciences,Xinjiang University;Institute for Arid Ecology and Environment,Xinjiang University;
  • 关键词:煤火 ; 遥感 ; 温度反演 ; 变化特征
  • 英文关键词:coal fire;;remote sensing;;inversing of temperature;;characteristics of change
  • 中文刊名:ZGKA
  • 英文刊名:China Mining Magazine
  • 机构:新疆大学资源与环境科学学院;新疆大学干旱生态环境研究所;
  • 出版日期:2018-01-15
  • 出版单位:中国矿业
  • 年:2018
  • 期:v.27;No.245
  • 基金:国家自然科学基金项目资助(编号:51374182)
  • 语种:中文;
  • 页:ZGKA201801032
  • 页数:5
  • CN:01
  • ISSN:11-3033/TD
  • 分类号:163-167
摘要
本文采用2013~2016年每年11月份Landsat8影像数据,运用辐射传输方程(大气校正法)反演准南煤田大泉湖火区地表温度,分析该火区温度场时空变化特征。通过研究得到以下结论:在时间尺度上,研究区最高温度、平均温度和温度阈值变化趋势基本一致,最高值都出现在2016年;研究区温度异常区面积则大体上呈U型变化,2013年、2015年温度异常区面积较大;在空间尺度上,温度异常区呈东西走向不连续分布,研究期间温度异常区位置基本不变,温度异常区面积有所变化。
        With the use of the Landsat8 data,the authors attempt to analyze the change of the surface temperature of Daquanhu coal fire which is based on the inversing of surface temperature of this coal fire.Result show that the max temperature,the average temperature and the threshold temperature have the same trend of change.The max temperature appears in 2016.The change trend of abnormal temperature area is mainly U-shaped,and the largest area was in 2013.The abnormal temperature area presents a discontinuous distribution with the change of areas.
引文
[1]Pone J D N,Hein K A A,Stracher G B,et al.The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa[J].International Journal of Coal Geology,2007,72(2):124-140.
    [2]Wu J J,Liu X C,Jiang W G,et al.Index system of coal fire risk assessment[C]∥EOGC Proceedings of the 2nd International Conference on Earth Observation for Global Changes.2009:1406-1412.
    [3]齐德香,蔡忠勇,曹建文,等.新疆维吾尔自治区第三次煤田火区普查报告[R].新疆煤田灭火工程局,2009.
    [4]Anderson M C,Allen R G,Morse A,et al.Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources[J].Remote Sensing of Environment,2012,122:50-65.
    [5]蒋大林,匡鸿海,曹晓峰,等.基于Landsat8的地表温度反演算法研究——以滇池流域为例[J].遥感技术与应用,2015,30(3):448-454.
    [6]Ellyett C D,Fleming A W.Thermal infrared imagery of The Burning Mountain coal fire[J].Remote Sensing of Environment,1974,3(1):79-86.
    [7]Yu X L,Guo X L,Wu Z C.Land surface temperature retrieval from Landsat 8TIRS-comparison between radiative transfer equation-based method,split window algorithm and single channel method[J].Remote Sensing,2014,6(10):9829-9852.
    [8]李如仁,贲忠奇,李品,等.基于Landsat-8的煤火监测方法研究[J].煤炭学报,2016,41(7):1735-1740.
    [9]Voigt Stefan,Tetzlaff Anke,Zhang Jianzhong,et al.International Journal of Coal Geology,2004,59:121.
    [10]蒋卫国,武建军,顾磊,等.基于夜间热红外光谱的地下煤火监测方法研究[J].光谱学与光谱分析,2011,31(2):357-361.
    [11]张春森,徐肖雷,陈越峰.基于ETM+数据的煤田火区温度异常信息提取[J].国土资源遥感,2017,29(2):201-206.
    [12]夏楠,塔西甫拉提·特依拜,张飞,等.新疆准东露天煤矿区地表温度反演及时空变化特征[J].中国矿业,2016,25(1):69-73,96.
    [13]姬洪亮.多尺度热红外遥感数据在煤田火区信息提取中的应用[D].乌鲁木齐:新疆大学,2012.
    [14]徐涵秋.Landsat 8热红外数据定标参数的变化及其对地表温度反演的影响[J].遥感学报,2016,20(2):229-235.
    [15]武慧智.基于灰色模型的纳木错面积动态变化及趋势预测[J].大庆师范学院学报,2014(6):10-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700