巨厚煤层开采覆岩含水层破坏模拟:以准东大井矿区为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of the impact of super-thick coal seam mining on overlying aquifers:a case study of Dajing mining area of Eastern Junggar coalfield
  • 作者:李根生 ; 曾强 ; 赵龙辉 ; 高坡
  • 英文作者:LI Gensheng;ZENG Qiang;ZHAO Longhui;GAO Po;School of Resources & Environmental Science,Xinjiang University;Institute for Arid Ecology & Environment,Xinjiang University;
  • 关键词:准东矿区 ; 巨厚煤层开采 ; 覆岩移动 ; 含水层破坏 ; 数值模拟
  • 英文关键词:Eastern Junggar coalfield;;super-thick coal seam mining;;overlying rocks movement;;damage to aquifers;;numerical simulation
  • 中文刊名:ZGKA
  • 英文刊名:China Mining Magazine
  • 机构:新疆大学资源与环境科学学院;新疆大学干旱生态环境研究所;
  • 出版日期:2018-03-15
  • 出版单位:中国矿业
  • 年:2018
  • 期:v.27;No.247
  • 基金:国家自然科学基金项目资助(编号:51374182);; 新疆维吾尔自治区研究生科研创新项目资助(编号:XJGRI2017028)
  • 语种:中文;
  • 页:ZGKA201803021
  • 页数:6
  • CN:03
  • ISSN:11-3033/TD
  • 分类号:107-112
摘要
本文针对准东矿区巨厚煤层典型赋存特征,以大井矿区为研究对象,通过识别覆岩关键层及含水层,采用UDEC数值模拟方法,建立大井矿区巨厚煤层开采覆岩力学模型,对不同开采方法覆岩含水层破坏进行了模拟研究。结果表明:研究区覆岩关键层分为4层、覆岩含水层共2层;开采厚度相同时,大采高开采覆岩下沉量、裂隙带发育高度及开采对含水层的扰动影响均大于放顶煤开采;采高24m,推进长度为300m时,导水裂隙已发育至含水层Ⅱ;主关键层对覆岩位移、裂隙分布及开采对含水层的扰动影响起关键作用。
        With the application of UDEC numerical tool,the authors studied the impact of the superthick coal seam mining activities on aquifers in Dajing mining area of Eastern Junggar coalfield which is based on the characteristics of coal seam deposition.The results showed that there are four key strata layers and two aquifers in this mining area.And it also showed that the more of the subdivision of coal seam,the more of the subsidence and the height of fracture of overlying strata,and consequently the higher of the fracturing height of rocks happened for same coal mining thickness which caused much damage to aquifers.On condition of mining 24 mheight and advancing 300 m,the key strata and aquifer No.2 were damaged and collapsed.And the main key strata plays a vital role in the movement of overlying rocks and damage to aquifers.
引文
[1]曾强,李根生,董敬宣,等.新疆煤炭资源开采典型生态环境问题及对策[J].矿业安全与环保,2017,44(1):106-110.
    [2]李根生,曾强,董敬宣,等.准东矿区邻近奇台绿洲地下水位变化趋势分析[J].中国矿业,2017,26(5):148-153.
    [3]钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230.
    [4]许家林,王晓振,刘文涛,等.覆岩主关键层位置对导水裂隙带高度的影响[J].岩石力学与工程学报,2009,28(2):380-385.
    [5]许家林,连国明,朱卫兵,等.深部开采覆岩关键层对地表沉陷的影响[J].煤炭学报,2007,32(7):686-690.
    [6]范立民.陕北地区采煤造成的地下水渗漏及其防治对策分析[J].矿业安全与环保,2007,34(5):62-64.
    [7]范立民,马雄德,冀瑞君.西部生态脆弱矿区保水采煤研究与实践进展[J].煤炭学报,2015,40(8):1711-1717.
    [8]黄庆享.浅埋煤层保水开采隔水层稳定性的模拟研究[J].岩石力学与工程学报,2009,28(5):987-992.
    [9]黄庆享.浅埋煤层保水开采岩层控制研究[J].煤炭学报,2017,42(1):50-55.
    [10]王双明,黄庆享,范立民,等.生态脆弱矿区含(隔)水层特征及保水开采分区研究[J].煤炭学报,2010,35(1):7-14.
    [11]Liu X,Tan Y,Ning J,et al.The Height of Water-Conducting Fractured Zones in Longwall Mining of Shallow Coal Seams[J].Geotechnical&Geological Engineering,2015,33(3):693-700.
    [12]Song G,Yang S.Investigation into strata behaviour and fractured zone height in a high-seam longwall coal mine[J].Journal of the Southern African Institute of Mining&Metallurgy,2015,115(8):781-788.
    [13]L Hai-Feng,Y Duo-Xi,H You-Biao,et al.The prediction of height of water-conducting fractured zone in overburden strata of seam using grey artificial neural networks[J].Electronic Journal of Geotechnical Engineering,2015,20(13):5787-5799.
    [14]许猛堂.新疆巨厚煤层开采覆岩活动规律及其控制研究[D].徐州:中国矿业大学,2014.
    [15]田成东.巨厚煤层开采覆岩破坏规律及地表变形研究[D].徐州:中国矿业大学,2016.
    [16]丛森,程建远,王云宏,等.导水裂隙带发育高度的微震监测研究[J].中国矿业,2017,26(3):126-131.
    [17]孙晓冬,黄志增,马兆瑞.准东煤田巨厚煤层开采技术研究[J].煤矿开采,2014,19(4):35-37.
    [18]李曌,王金安.金沙河下采煤地表移动变形与导水裂隙带高度预测分析[J].中国矿业,2012,21(8):120-124.
    [19]郝志勇,林柏泉,张家山,等.基于UDEC的保护层开采中覆岩移动规律的数值模拟与分析[J].中国矿业,2007,16(7):81-84.
    [20]刘英锋,王世东,王晓蕾.深埋特厚煤层综放开采覆岩导水裂缝带发育特征[J].煤炭学报,2014,39(10):1970-1976.
    [21]徐智敏,孙亚军.水库下采煤导水裂隙带高度预测[J].中国矿业,2008,17(3):96-99.
    [22]钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010:76-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700