催化效应对气动热环境影响的流动-传热耦合数值分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis
  • 作者:王国林 ; 周印佳 ; 金华 ; 孟松鹤
  • 英文作者:Wang Guolin;Zhou Yinjia;Jin Hua;Meng Songhe;National Key Laboratory of Science and Technology on Advanced Composites in Special Environments,Harbin Institute of Technology;Hypervelocity Aerodynamics Institute of China Aerodynamics Research and Development Center;Institute of manned space system engineering,China academy of space technology;
  • 关键词:高超声速 ; 流动-传热耦合 ; 催化效应 ; 地面风洞实验 ; 数值模拟 ; 气动热环境
  • 英文关键词:hypersonic;;flow-heat transfer;;catalytic effect;;ground wind tunnel experiment;;numerical simulation;;aerothermal environment
  • 中文刊名:LTLC
  • 英文刊名:Journal of Experiments in Fluid Mechanics
  • 机构:哈尔滨工业大学特种环境复合材料技术国家级重点实验室;中国空气动力研究与发展中心超高速空气动力研究所;中国空间技术研究院载人航天总体部;
  • 出版日期:2019-06-15
  • 出版单位:实验流体力学
  • 年:2019
  • 期:v.33;No.149
  • 基金:国家自然科学基金青年科学基金项目(11502058);; 黑龙江省博士后启动基金项目(LBH-Q1605);; 中央高校基本科研业务专项资金资助项目(HIT.NSRIF.201823)
  • 语种:中文;
  • 页:LTLC201903002
  • 页数:7
  • CN:03
  • ISSN:11-5266/V
  • 分类号:15-21
摘要
鉴于高超声速飞行中高温气体效应带来的壁面催化反应可显著增加气动热载荷,在气动热环境与结构热响应的分析与预报中需充分考虑催化反应带来的影响。将简化原子复合催化模型和有限速率催化反应模型嵌入超高速流动-传热耦合分析模型中,建立超高速流动/催化反应/传热多场耦合分析模型。其中,通过高频等离子风洞的催化特性测试获得ZrB_2-SiC超高温陶瓷材料表面催化系数与温度的函数关系,对比分析耦合计算和非耦合计算、简化原子复合催化模型和有限速率催化反应模型对气动热环境的影响和适应性,结果表明材料表面催化特性对壁面总热流有重大影响。对于具有较高热导率材料的热响应,耦合传热分析能够有效避免非耦合计算带来的过度高估的结果,而有限速率催化反应模型可有效提高计算精度。在此基础之上,通过耦合传热分析,揭示了催化反应与壁面传热的内在关系,证明了在传热分析中考虑表面催化效应可提升结构热响应精度和防热系统精细化设计的能力。
        In view of the high-temperature gas effect in the hypersonic flight,the wall catalytic reaction can significantly increase the aerodynamic thermal load.For the analysis and prediction of the aerodynamic thermal environment and structural thermal response,the influence of the catalytic reaction should be fully considered.In this paper,the simplified atomic recombination catalytic model and the finite-rate catalytic reaction model are embedded in the ultra-high-speed-flow heat-transfer coupling analysis model to establish a ultra-high-speed flow/catalytic reaction/heat transfer multi-field coupling analysis model.Among them,the surface catalytic coefficient of the ZrB_2-SiC ultra-high temperature ceramic material is obtained as a function of the temperature through the catalytic experiment of the high-frequency plasma wind tunnel.The coupled calculation and the uncoupled calculation,and the simplified atomic recombination catalytic model and the finite-rate catalytic reaction model are compared.It is found that the total heat flow of the wall depends on the surface catalytic properties of the material.For the thermal response of materials with higher thermal conductivity,the coupled heat transfer analysis can effectively avoid the uncoupled calculation zone.The finite-rate catalytic reaction model can improve the calculation accuracy to avoid over-estimation.On this basis,the intrinsic relationship between the catalytic reaction and the wall heat transfer is revealed by the coupled heat transfer analysis.It is proved that the surface catalytic effect should be considered in the heat transfer analysis to improve the thermal response accuracy of the structure to promote the design capabilities of the thermal protection system.
引文
[1]Chen Y K,Henline W D,Tauber M E.Mars pathfinder trajectory based heating and ablation calculations[J].Journal of Spacecraft and Rockets,1995,32(2):225-230.
    [2]Adam J C.Coupled fluid-thermal-structural modeling and analysis of hypersonic flight vehicle structures[D].Columbus:Ohio State University,2010.
    [3]Olynick D R,Henline W D.Navier-Stokes heating calculations for benchmark thermal protection system sizing[J].Journal of Spacecraft and Rockets,1996,33(6):807-814.
    [4]Calvo J,Mack A,Bozic O.Study of the heating of a hypersonic projectile through a multidisciplinary simulation[C]//Proc of European Conference on Computational Fluid Dynamics.2006.
    [5]Molvik G A,Milos F S,Chen Y K,et al.Computation of high speed flow fields with multidimensional heat conduction[R].AIAA-1995-2116,1995.
    [6]Yamamoto Y,Yoshioka M.CFD and FEM coupling analysis of OREX aerothermodynamic flight data[R].AIAA-1995-2087,1995.
    [7]Thornton E A,Dechaumphai P.Coupled flow,thermal,and structural analysis of aerodynamically heated panels[J].Journal of Aircraft,1988,25(11):1052-1059.
    [8]桂业伟,袁湘江.类前缘防热层流场与热响应耦合计算研究[J].工程热物理学报,2002,23(6):733-735.Gui Y W,Yuan X J.Numerical simulation on the coupling phenomena of aerodynamic heating with thermal response in the region of the leading edge[J].Journal of Engineering Thermophysics,2002,23(6):733-735.
    [9]张兵,韩景龙.多场耦合计算平台与高超声速热防护结构传热问题研究[J].航空学报,2011,32(3):400-409.Zhang B,Han J L.Multi-field coupled computing platform and thermal transfer of hypersonic thermal protectionstrucutres[J].Acta Aeronautica et Astronautica Sinica,2011,32(3):400-409.
    [10]Zhang S T,Chen F,Liu H.Interated of fluid-thermalstructural analysis for predicting aerothermal environment of hypersonic vehicles[R].AIAA-2014-1394,2014.
    [11]孟松鹤,金华,王国林,等.热防护材料表面催化特性研究进展[J].航空学报,2014,35(2):287-302.Meng S H,Jin H,Wang G L,et al.Research advances on surface catalytic properties of thermal protection materials[J].Acta Aeronautica et Astronautica Sinica,2014,35(2):287-302.
    [12]Paterna D,Monti R,Savino R,et al.Experimental and numerical investigation of martian atmosphere entry[J].Journal of Thermophysics and Heat Transfer,2002,39(2):227-236.
    [13]Wright M,Loomis M,Papadopoulos P.Aerothermal analysis of the project fire II afterbody flow[J].AIAA-2001-3065,2001.
    [14]杨肖峰,唐伟,桂业伟.MSL火星探测器高超声速流场预测及气动性分析[J].宇航学报,2015,36(4):383-389.Yang X F,Tang W,Gui Y W.Hypersonic flow field prediction and aerodynamics analysis for MSL entry capsule[J].Journal of Astronautics,2015,36(4):383-389.
    [15]刘宗庆,董维中,丁明松,等.火星探测器气动热环境和其动力特性的数值模拟研究[J].空气动力学学报,2018,36(4):642-650.Liu Q Z,Dong W Z,Ding M S,et al.Numerical simulation of aerothermal environments and aerodynamic characteristics of Mars entry capsules[J].Acta Aerodynamics Sinica,2018,36(4):642-650.
    [16]Voinov L,Zalogin G N,Lunev V V,et al.Comparative analysis of laboratory and full-scale data on the catalycity of the heat shield for the Bor and Buran orbital vehicles[J].Cosmonautics and Rocket Production,1994,2:51-57.
    [17]董维中,乐嘉陵,刘伟雄.驻点壁面催化速率常数确定的研究[J].流体力学实验与测量,2000,14(3):1-6.Dong W Z,Le J L,Liu W X.The determination of catalyticreate constant of surface materials of testing model in the shock tube[J].Experiments and Measurements in Fluid Mechanics,2000,14(3):1-6.
    [18]苗文博,程晓丽,艾邦成.壁面催化条件对热环境预测的影响[J].航天器环境工程,2009,26(增刊):45-49.Miao W B,Cheng X L,Ai B C.The influence of catalyze condition on the thermal environment predicting[J].Spacecraft Environment Engineering,2009,26(S):45-49.
    [19]苗文博,程晓丽,艾邦成,等.高超声速流动壁面催化复合气动加热特性[J].宇航学报,2013,34(3):442-446.Miao W B,Cheng X L,Ai B C,et al.Surface catalysis recombination aero heating characteristics of hypersonic flow[J].Journal of Astronautics,2013,34(3):442-446.
    [20]李海燕,石安华,马平,等.高超声速非平衡流研究进展[C]//中国力学大会论文集.2017.Li H Y,Shi A H,Ma P,et al,Recent advances in hypersonic non-equilibrium flows[C]//Proc of the Chinese Congress of Theoretical and Applied Mechanics.2017.
    [21]Inger G R,Gnoffo P A.Hypersonic entry heating with discontinuous surfacecatalycity-A combined analytic/CFDapproach[R].AIAA-1996-2150,1996.
    [22]Prabhu D K,Venkatapathy E,Kontinos D A,et al.X-33catalytic heating[R].AIAA-1998-2844,1998.
    [23]Scott C D,Derry S M.Catalytic recombination and space shuttle heating[R].AIAA-1982-0841,1982.
    [24]Ranuzzi G,Grass F,Bisceglia S.Effects of the surface catalysis on high-enthalpy shock-wave/turbulent boundary-layer interactions[R].AIAA-2005-3219,2005.
    [25]Viviani A,Pezzella G.Influence of surface catalyticity on reentry aerothermodynamics and heat shield[R].AIAA-2007-4047,2007.
    [26]Grumet A A,Anderson J D.The effects of surface catalysis on the hypersonic shock wave/boundary layer interaction[R].AIAA-1994-2073,1994.
    [27]Mizoguchi M,Iwata N,Hayashi K,et al.Reduction of aerodynamic heating with wall catalysis by film cooling[R].AIAA-2006-8068,2006.
    [28]Shirouzu M,Inouye Y,Watanabe S,et al.Overview of aero and aerothermodynamic researches on HOPE-X and related activities in Japan[R].AIAA-2004-2426,2004.
    [29]Peigin S,Kazak V.3DThermochemical nonequilibrium viscous gas flow over blunt bodies with catalytic surface at attack and slip angles[R].AIAA-99-3628,1999.
    [30]董维中,高铁锁,丁明松,等.高超声速飞行器表面温度分布与气动热耦合数值研究[J].航空学报,2016,36(25):311-324.Dong W Z,Gao T S,Ding M S,et al.Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J].Acta Aeronautica et Astronautica Sinica,2016,36(25):311-324.
    [31]Laux T,Feigl M,St9ckle T,et al.Estimation of the surface catalyticity of PVD coatings by simultaneous heat flux and LIFmeasurements in high enthalpy air flows[R].AIAA-2000-2364,2000.
    [32]Kurotaki T.Catalytic Model on SiO2-based surface and application to real trajectory[J].Journal of Spacecraft and Rockets,2001,38(5):798-800.
    [33]周印佳,孟松鹤,解维华,等.高超声速飞行器热环境与结构传热的多场耦合数值研究[J].航空学报,2016,37(9):2739-2748.Zhou Y J,Meng S H,Xie W H,et al.Multi-field coupling numerical analysis of aerothermal environment and structureal heat transfer of hypersonic vehicles[J].Acta Aeronautica et Astronautica Sinica,2016,37(9):2739-2748.
    [34]刘丽萍,王国林,王一光,等.高焓化学非平衡流条件下防热材料表面催化特性的试验方法[J].航空学报,2017,38(10):121317-1-9.Liu L P,Wang G L,Wang Y G,et al.Test methods for determining surface catalytic properties of thermal protection materials in high enthalpy chemical non-equilibrium flows[J].Acta Aeronautica et Astronautica Sinica,2017,38(10):121317-1-9.
    [35]刘丽萍,王国林,王一光,等.高焓化学非平衡流条件下C/SiC复合材料的催化性能[J].航空学报,2018,39(5):621696-1-8.Liu L P,Wang G L,Wang Y G,et al.Catalytic performance of C/SiC composites in high enthalpy chemical non-equilibrium flow[J].Acta Aeronautica et Astronautica Sinica,2018,39(5):621696-1-8.
    [36]Anderson J D.Hypersonic and high temperature gas dynamics[M].New York:McGraw-Hill,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700