6063铝合金螺旋挤压过程数值模拟与组织性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on numerical simulation,microstructure and properties of spiral extrusion process for 6063 aluminum alloy
  • 作者:李辉 ; 刘厚根 ; 夏峰
  • 英文作者:LI Hui;LIU Hou-gen;XIA Feng;School of Mechanical and Electrical Engineering,Central South University;State Key Laboratory of High Performance and Complex Manufacturing,Central South University;
  • 关键词:6063铝合金 ; 螺旋挤压 ; 微观组织 ; 再结晶 ; 硬度
  • 英文关键词:6063 aluminum alloy;;spiral extrusion;;microstructure;;recrystallization;;hardness
  • 中文刊名:SXGC
  • 英文刊名:Journal of Plasticity Engineering
  • 机构:中南大学机电工程学院;中南大学高性能复杂制造国家重点实验室;
  • 出版日期:2019-06-24
  • 出版单位:塑性工程学报
  • 年:2019
  • 期:v.26;No.136
  • 基金:湖南省科技厅重点研发计划(2015GK3006);; 高性能复杂制造国家重点实验室自主探索基金项目(zzyjkt2014-09)
  • 语种:中文;
  • 页:SXGC201903002
  • 页数:8
  • CN:03
  • ISSN:11-3449/TG
  • 分类号:15-22
摘要
建立了一种截面对称的铝合金螺旋型材挤压模型,通过具有螺旋型腔的模具挤压实现铝合金螺旋型材的近净成形。基于DEFORM-3D有限元数值模拟及挤压实验,研究了铝合金坯料在挤压过程中温度场、速度场、应变场以及应力场等物理场量的分布规律,对挤压型材的晶粒组织、微观特性及硬度分布进行预测与分析。结果表明,6063铝合金在挤压温度为450℃、挤压比为22的螺旋挤压过程中,同一截面上,坯料的温度分布是不均匀的,呈螺旋梯度分布,且边部区域的应力应变、挤压速度要大于中心区域。坯料在模具型腔内流动时,与工作带接触的部位变形最为强烈,应力应变整体上升。微观组织分析表明,在螺旋挤压过程中坯料发生动态再结晶,同一截面上,晶粒沿螺旋方向偏转分布,型材边部比中部晶粒更为均匀细小,表明变形程度大的区域晶粒细化更为明显。硬度的分布呈现从中部到边部逐渐增强的趋势,表明变形程度是影响硬度分布的关键因素。
        A symmetrical extrusion model of aluminum alloy spiral profile was established to express the near-net forming extrusion process of aluminum alloy spiral profile which was realized by a mold with a spiral cavity. Based on the finite element numerical simulation of DEFORM-3 D and extrusion test,the distributions of temperature field,velocity field,strain field and stress field of aluminum alloy billet during the extrusion process were studied,the grain structure,microscopic characteristics and hardness distribution of the extruded profile were predicted and analyzed. The results show that in the spiral extrusion process of 6063 aluminum alloy with extrusion temperature of 450 ℃ and extrusion ratio of 22,the temperature distribution of the billet is uneven and has spiral gradient distribution on the same section,the stress,strain and extrusion speed in the edge region are greater than that in the center area. When the billet flows in the mold cavity,the deformation of the portion in contact with the working belt is the strongest,resulting in an overall increase of stress and strain.Microstructure analysis shows that dynamic recrystallization occurs in the billet during the process of spiral extrusion. On the same section,the grains deflect along the spiral direction,and the edge of the profile is more uniform and finer than that in the middle,which indicates that the grain refinement is more obvious in the region with large deformation degree. The distribution of hardness increases gradually from the middle to the edge,indicating that the deformation degree is the key factor which affects the hardness distribution.
引文
[1]梁世斌.铝合金挤压及热处理[M].长沙:中南大学出版社,2014.LIANG Shibin.Extrusion and heat treatment of aluminium alloy[M].Changsha:Central South University Press,2014.
    [2]郑晖,赵曦雅.汽车轻量化及铝合金在现代汽车生产中的应用[J].锻压技术,2016,41(2):1-5.ZHENG Hui,ZHAO Xiya.Lightweight automobile and application of aluminum alloys in modern automobile production[J].Forging&Stamping Technology,2016,41(2):1-5.
    [3]刘厚根,赵贝贝,夏峰.铝合金螺旋面挤压过程数值模拟及模具优化[J].锻压技术,2017,42(12):169-174.LIU Hougen,ZHAO Beibei,XIA Feng.Numerical simulation and mold optimization on extrusion process of aluminum alloy spiral surface[J].Forging&Stamping Technology,2017,42(12):169-174.
    [4]FARHOUMAND A,HODGSON P D,KHODDAM S.Finite element analysis of plastic deformation in variable lead axisymmetric forward spiral extrusion[J].Journal of Materials Science,2013,48:2454-2461.
    [5]万震宇,周霞,张昭.6005-T6铝合金搅拌摩擦焊接微观组织演变计算及力学性能预测[J].机械工程学报,2018,54(8):129-135.WAN Zhenyu,ZHOU Xia,ZHANG Zhao.Calculations of microstructural changes and predictions of mechanical properties in friction stir welding of AA6005-T6[J].Journal of Mechanical Engineering,2018,54(8):129-135.
    [6]彭柳锋,郭道强,魏玉勇,等.2A12铝合金锻件成形的有限元模拟[J].矿冶工程,2017,37(5):99-104.PENG Liufeng,GUO Daoqiang,WEI Yuyong,et al.Finite element simulation of formation of 2A12 aluminum alloy forgings[J].Mining and Metallurgical Engineering,2017,37(5):99-104.
    [7]崔振山,陈文,陈飞,等.大锻件控性锻造过程的计算机模拟技术[J].机械工程学报,2010,46(11):2-8.CUI Zhenshan,CHEN Wen,CHEN Fei,et al.Computer modeling of property-controlled forging process for heavy forgings[J].Journal of Mechanical Engineering,2010,46(11):2-8.
    [8]NOOMAN B K,ERMAN A T.Newest developments on the manufacture of helical profiles by hot extrusion[J].Journal of Manufacturing Science and Engineering,2011,133(6):459-463.
    [9]THANESHAN S,SHAHIN K,SADEN H Z.Spiral extrusion of aluminum/copper composite for future manufacturing of hybrid rods:A study of bond strength and interfacial characteristics[J].Journal of Alloys and Compounds,2013,571(23):85-92.
    [10]HWANG Y M,CHANG C N.Hot extrusion of hollow helical tubes of magnesium alloys[J].Procedia Engineering,2014,81:2249-2254.
    [11]刘志文,李落星,张明,等.铝合金热挤压过程中界面摩擦的研究进展[J].中国有色金属学报,2017,27(7):1311-1322.LIU Zhiwen,LI Luoxing,ZHANG Ming,et al.Research progress of interface friction in hot extrusion of aluminium alloys[J].The Chinese Journal of Nonferrous Metals,2017,27(7):1311-1322.
    [12]YU J,ZHAO G,CHEN L.Analysis of longitudinal weld seam defects and investigation of solid-state bonding criteria in porthole die extrusion process of aluminum alloy profiles[J].Journal of Materials Processing Technology,2016,237:31-47.
    [13]侯文荣,张志豪,谢建新,等.基于质点逆向追踪的铝合金空心型材横断面温度的不均匀性[J].中国有色金属学报,2015,25(7):1798-1807.HOU Wenrong,ZHANG Zhihao,XIE Jianxin,et al.Temperature inhomogeneity on cross section of Al alloy hollow profile based on reverse point tracking method[J].The Chinese Journal of Nonferrous Metals,2015,25(7):1798-1807.
    [14]刘晓涛,董杰,崔建忠,等.高强铝合金均匀化热处理[J].中国有色金属学报,2003,13(4):909-913.LIU Xiaotao,DONG Jie,CUI Jianzhong,et al.Homogenizing treatment of high strength aluminium alloy cast under electric magnetic field[J].The Chinese Journal of Nonferrous Metals,2003,13(4):909-913.
    [15]林高用,周佳,郑小燕,等.X5214铝合金型材挤压过程的数值模拟[J].中南大学学报(自然科学版),2008,39(4):748-754.LIN Gaoyong,ZHOU Jia,ZHENG Xiaoyan,et al.Numerical simulation of extrusion process of X5214 aluminum alloy profile[J].Journal of Central South University(Science and Technology),2008,39(4):748-754.
    [16]陈良,赵国群,陈高进,等.LZ91 Mg-Li合金分流模挤压成形过程数值模拟与实验研究[J].金属学报,2018,54(2):339-346.CHEN Liang,ZHAO Guoqun,CHEN Gaojin,et al.Numerical simulation and experimental study on porthole eie extrusion process of LZ91 Mg-Li alloy[J].Acta Metallurgica Sinica,2018,54(2):339-346.
    [17]杨栋,陈文琳,吴跃.等通道转角挤压7075铝合金动态再结晶组织晶粒度预报与性能分析[J].机械工程学报,2014,50(6):87-93.YANG Dong,CHEN Wenlin,WU Yue.Dynamic recrystallization microstructure grain size prediction and performance analysis of7075 aluminum alloy prepared by equal channel angular pressing[J].Journal of Mechanical Engineering,2014,50(6):87-93.
    [18]王健,卢雅琳,徐文婷,等.热挤压工艺对6061铝合金组织及性能的影响[J].金属热处理,2016,41(10):172-175.WANG Jian,LU Yalin,XU Wenting,et al.Effect of hot extrusion process on microstructure and properties of 6061 aluminum alloy[J].Heat Treatment of Metals,2016,41(10):172-175.
    [19]FAKHAR N,FERESHTEH-SANIEE F,MAHMUDI R.Significant improvements in mechanical properties of AA5083 aluminum alloy using dual equal channel lateral extrusion[J].Transactions of Nonferrous Metals Society of China,2016,26(12):3081-3090.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700