用户名: 密码: 验证码:
电弧离子镀制备耐事故包壳材料厚Cr涂层及高温抗氧化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and High Temperature Oxidation Resistance of Thick Cr Coated on Zr-4 Alloy by Cathodic Arc Deposition for Accident Tolerant Fuel Claddings
  • 作者:胡小刚 ; 董闯 ; 陈宝清 ; 杨红艳 ; 张瑞谦 ; 谷伟 ; 陈大民
  • 英文作者:HU Xiao-gang;DONG Chuang;CHEN Bao-qing;YANG Hong-yan;ZHANG Rui-qian;GU Wei;CHEN Da-min;Key Lab of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), Dalian University of Technology;Key Lab of Reactor Fuel and Materials, Nuclear Power Institute of China;Dalian Nano-Crystal Technology Co., Ltd;
  • 关键词:Cr涂层 ; 厚膜 ; 弧沉积 ; 高温抗氧化 ; Zr-O通道 ; 耐事故包壳材料
  • 英文关键词:Cr;;thick coating;;high temperature oxidation;;Zr-O channels;;ATF
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:大连理工大学三束材料改性教育部重点实验室;中国核动力研究设计院反应堆燃料及材料重点实验室;大连纳晶科技有限公司;
  • 出版日期:2019-02-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 语种:中文;
  • 页:BMJS201902031
  • 页数:13
  • CN:02
  • ISSN:50-1083/TG
  • 分类号:217-229
摘要
目的在Zr-4包壳材料表面制备具有耐事故高温性能的抗氧化厚Cr涂层,保护Zr基体,以防止与高温水蒸汽反应。方法采用自主研发的φ155 mm大弧源电弧离子镀技术在Zr-4合金表面制备约20μm的Cr涂层,通过X射线衍射仪(XRD)分析氧化前后的物相变化,通过扫描电子显微镜(SEM)和电子探针(EPMA)研究厚Cr涂层在不同温度下产生的多种缺陷,探究厚Cr涂层对Zr基体的防护机制。结果当涂层沉积速率>3μm/h,制备的Cr涂层均匀致密,结合力优异,具有柱状晶结构,可经受至少15.8%的形变量,其抗塑性形变能力优异。沉积Cr层样品经过1000、1100、1200℃氧化,保温1h后快速冷却至室温,厚Cr涂层分化为Cr Ox层、Cr_2O_3层、残余Cr层和Cr-Zr扩散层。经受苛刻条件(1200℃/3600 s)测试,除保持连续性的氧化层外,在基体上仍残余良好结合的6.8μm Cr层。氧化层两次开裂阻止基体被进一步破坏。Cr-Zr扩散层是由Zr元素向Cr涂层方向渗透生长的。1200℃时,在基体近表面处产生的大尺寸隆起,是由于在近表面处韧性β-Zr(O)相转变为脆性α-Zr相,以及Cr偏聚贫Sn造成的。残余Cr层的柱状晶结构会形成Zr-O扩散通道,对涂层最后失效将起关键作用。结论 Zr合金包壳材料镀覆20μm的Cr涂层具有充分的耐事故能力,在严苛的事故条件测试下,各缺陷均未能使Zr-4合金基体暴露,涂层能够形成有效壁垒,防止锆合金基体暴露造成核事故,阻止基体进一步被破坏。
        The work aims to prepare thick oxidation resistance Cr coating with high-temperature accident tolerance on Zr-4 fuel claddings(ATF), so as to protect Zr substrate from exposure to high temperature steam vapor. A 20 μm Cr was prepared bya home-made φ155 mm large arc-source on Zr-4 alloy substrate(>3 μm/h). Phase composition before and after oxidation wasanalyzed by X-ray diffraction(XRD) and defects generated at different temperature were analyzed by scanning electron micro-scope(SEM) and electron probe micro-analyzer(EPMA) to investigate the protective mechanism of Cr coating to Zr substrate.When deposition rate was >3 μm/h, the Cr coating was uniform and dense with excellent resultant force and columnar crystalstructure and could withstand at least 15.8% of plastic deformation and had better plastic deformation ability. After coated sam-ples were oxidized at 1000 °C, 1100 ℃, and 1200 ℃ for 1 h and cooled in air down to room temperature(RT), the thick Crcoating turned into four sublayers to protect the Zr-4 substrate: outer CrOx layer, inner Cr2 O3 layer, residual Cr layer, and Cr-Zrdiffusion layer. Even after the toughest test(1200 ℃/3600 s), except the outer oxide layer remaining continuous adhesion to theZr-4 alloy, a 6.8 μm residual Cr layer still existed on the substrate. Twice oxide ruptures were formed to prevent the furtherdamage. The Cr-Zr diffusion layer was formed by Zr element permeating to the Cr coating. The formation of sub-surface voidswere clearly related to brittle α-Zr(O) turned by β-Zr(O) and Sn/Cr segregations near the surface. Zr-O channels formed by co-lumnar crystal structure of residual Cr layer were the key factors of coatings failure. The ~20 μm Cr coating cladded on Zr alloyhas sufficient accident tolerance. Zr-4 alloy substrate is not exposed under severe accident condition for all flaws. The thick Crcoating can create effective barriers to prevent the zirconium alloy substrate from causing nuclear accident and avoid furtherdamage to the substrate.
引文
[1]IDARRAGA T I,FLEM M L,BRACHET J C,et al.Assessment at cea of coated nuclear fuel cladding for lwrs with increasing margins in loca and beyond loca conditions[C]//Lwr fuel performance meeting.Topfuel:[s.n.],2013.
    [2]KIM Hyun-Gil,YANG Jae-Ho,KIM Weon-Ju,et al.Development status of accident-tolerant fuel for light water reactors in korea[J].Nuclear engineering&technology,2016,48(1):1-15.
    [3]DECK C P,KHALIFA H E,SAMMULI B,et al.Fabrication of SiC-SiC composites for fuel cladding in advanced reactor designs[J].Progress in nuclear energy,2012,57(6):38-45.
    [4]FIELD K G,YAMAMOTO Y,PINT B A,et al.Accident tolerant fecral fuel cladding:current status towards commercialization[C]//Environmental degradation of materials in nuclear power systems.Portland:Springe,2017.
    [5]BRACHET J C,LORRETTE C,MICHANX A,et al.CEA studies on advanced nuclear fuel claddings for enhanced accident tolerant lwrs fuel(loca and beyond loca conditions)[C]//In fontevraud 8-contribution of materials investigations and operating experience to lwrs?safety,performance and reliability france.Avignon:[s.n.],2015.
    [6]YEOM H,LOCKHART C,MARIANI R,et al.Evaluation of steam corrosion and water quenching behavior of zirconium-silicide coated lwr fuel claddings[J].Journal of nuclear materials,2017,499:256-267.
    [7]HE Xiao-qiang,YU Hong-xing,JIANG Guang-ming,et al.Cladding oxidation model development based on diffusion equations and a simulation of the monoclinictetragonal phase transformation of zirconia during transient oxidation[J].Journal of nuclear materials,2014,451(1-3):55-64.
    [8]ZONG Wei-cheng,MOUCHE P A,HEUSER Brent J.Response of Cr and Cr-Al coatings on zircaloy-2 to high temperature steam[J].Journal of nuclear materials,2017,498:137-148.
    [9]TANG Chong-chong,STEINBRUECK M,STUEBERM,et al.Deposition,characterization and high-temperature steam oxidation behavior of single-phase Ti2AlC-coated zircaloy-4[J].Corrosion science,2018,135:87-98.
    [10]PINT B A.Performance of fecral for accident-tolerant fuel cladding in high-temperature steam[J].Corrosion reviews,2017,35(3):167-175.
    [11]CHEN Sheng-li,YUAN Cen-xi.Neutronic analysis on potential accident tolerant fuel-cladding combination U3Si2-fecral[J].Science and technology and nuclear Installations,2017(2):1-12.
    [12]KIM T H,KIM S S.Experimental investigation of fretting mechanisms of TiN coated fuel rod cladding materials(tribology)[J].Apcfs&atem,2017(2):964-969.
    [13]KIM I,KHATKHATAY F,JIAO L,et al.TiN-based coatings on fuel cladding tubes for advanced nuclear reactors[J].Journal of nuclear materials,2012,429(1-3):143-148.
    [14]PARK J Y,KIM I H,JUNG Y I,et al.High temperature steam oxidation of Al3Ti-based alloys for the oxidation-resistant surface layer on Zr fuel claddings[J].Journal of nuclear materials,2013,437(1-3):75-80.
    [15]BRACHET J C,SAUX M Le,LEZAUD C V,et al.Behavior under LOCA conditions of enhanced accident tolerant chromium coated zircaloy-4 claddings[C]//In topfuel.Boise:[s.n.],2016.
    [16]BISCHOFF J,DELAFOY C,VAUGLIN C,et al.Areva np’s enhanced accident tolerant fuel developments:focus on Cr-coated m5 cladding[J].Nuclear engineering&technology,2018,50:223-228.
    [17]ANG C,KEMERY C,KATOH Y.Electroplating chromium on cvd SiC and SiC-SiC advanced cladding via pyc compatibility coating[J].Journal of nuclear materials,2018,503:245-249.
    [18]KIM H G,KIM I H,JUNG Y I,et al.Adhesion property and high-temperature oxidation behavior of Cr-coated zircaloy-4 cladding tube prepared by 3d Laser coating[J].Journal of nuclear materials,2015,465:531-539.
    [19]WANG Yi-ding,ZHOU Wan-cheng,WEN Qin-long,et al.Behavior of plasma sprayed Cr coatings and fecral coatings on Zr fuel cladding under loss-of-coolant accident conditions[J].Surface and coatings technology,2018,344:141-148.
    [20]PARK J H,KIM H G,PARK J Y,et al.High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings[J].Surface&coatings technology,2015,280:256-259.
    [21]LANG W C,CAO Y,DU H,et al.Effect of multi-mode dynamic coupling magnetic field on arc spots movement in arc ion plating[J].Metallurgical&mining industry,2015(9):819-829.
    [22]LANG Wen-chang,XIAO Jin-quan,GONG Jun,et al.Influence of axisymmetric magnetic field on cathode spots movement in arc ion plating[J].Acta metallurgica sinica,2010,46(3):372-379.
    [23]SHI Chang-ming,WANG Tie-gang,PEI Zhi-liang,et al.Effects of the thickness ratio of CrN vs Cr2O3 layer on the properties of double-layered Cr N/Cr2O3 coatings deposited by arc ion plating[J].Journal of materials science,2014,30(5):473-479.
    [24]BRACHET J C,SAUX M L,FLEM M L,et al.On-going studies at cea on chromium coated zirconium based nuclear fuel claddings for enhanced accident tolerant lwrs fuel[C]//In topfuel.Switzerland:[s.n.],2015.
    [25]TOFFOLON M C,DESGRANGES C,CORVALAN MC,et al.Simulation of theβ-α(O)phase transformation due to oxygen diffusion during high temperature oxidation of zirconium alloys[J].Solid state phenomena,2011,172-174:652-657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700