Manipulating optical Tamm state in the terahertz frequency range with graphene
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Manipulating optical Tamm state in the terahertz frequency range with graphene
  • 作者:蒋乐勇 ; 唐娇 ; 王庆凯 ; 吴粤湘 ; 郑之伟 ; 项元江 ; 戴小玉
  • 英文作者:Leyong Jiang;Jiao Tang;Qingkai Wang;Yuexiang Wu;Zhiwei Zheng;Yuanjiang Xiang;Xiaoyu Dai;School of Physics and Electronics, Hunan Normal University;International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University;
  • 中文刊名:GXKB
  • 英文刊名:中国光学快报(英文版)
  • 机构:School of Physics and Electronics, Hunan Normal University;International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University;
  • 出版日期:2019-02-25
  • 出版单位:Chinese Optics Letters
  • 年:2019
  • 期:v.17
  • 基金:supported by the National Natural Science Foundation of China(Nos.11704119,61505111,61575127,and 61490713);; the Natural Science Foundation of Hunan Province(No.2018JJ3325);; the Natural Science Foundation of Guangdong Province(No.2015A030313549);; the Science and Technology Planning Project of Guangdong Province(No.2016B050501005);; the Scientific Research Fund of Hunan Provincial Education Department(No.17C0945)
  • 语种:英文;
  • 页:GXKB201902008
  • 页数:6
  • CN:02
  • ISSN:31-1890/O4
  • 分类号:35-40
摘要
The optical Tamm state(OTS), which exists generally at the interface between metal and a dielectric Bragg mirror, has been studied extensively in the visible and near infrared spectra. Nevertheless, OTS in the terahertz(THz) region normally receives far less attention. In this Letter, we demonstrate the physical mechanism of OTS at the interface between graphene and a dielectric Bragg mirror in the THz frequency band by applying the transfer matrix method and dispersion characteristics. Based on such mechanisms, we propose an efficient method that can precisely generate and control OTS at a desired angle and frequency. Moreover, we show that the OTS is dependent on the optical conductivity of graphene, making the graphene–dielectric-Bragg-mirror a good candidate for dynamic tunable OTS device in the THz frequency range.
        The optical Tamm state(OTS), which exists generally at the interface between metal and a dielectric Bragg mirror, has been studied extensively in the visible and near infrared spectra. Nevertheless, OTS in the terahertz(THz) region normally receives far less attention. In this Letter, we demonstrate the physical mechanism of OTS at the interface between graphene and a dielectric Bragg mirror in the THz frequency band by applying the transfer matrix method and dispersion characteristics. Based on such mechanisms, we propose an efficient method that can precisely generate and control OTS at a desired angle and frequency. Moreover, we show that the OTS is dependent on the optical conductivity of graphene, making the graphene–dielectric-Bragg-mirror a good candidate for dynamic tunable OTS device in the THz frequency range.
引文
1.A.V.Kavokin,I.A.Shelykh,and G.Malpuech,Phys.Rev.B 72,233102(2005).
    2.M.Kaliteevski,I.Iorsh,S.Brand,R.A.Abram,J.M.Chamberlain,A.V.Kavokin,and I.A.Shelykh,Phys.Rev.B 76,165415(2007).
    3.A.Kavokin,I.Shelykh,and G.Malpuech,Appl.Phys.Lett.87,261105(2005).
    4.W.L.Barnes,A.Dereux,and T.W.Ebbesen,Nature 424,824(2003).
    5.C.Symonds,G.Lheureux,J.P.Hugonin,J.J.Greffet,J.Laverdant,G.Brucoli,A.Lemaitre,P.Senellart,and J.Bellessa,Nano Lett.13,3179(2003).
    6.B.J.Lee,Y.B.Chen,and Z.M.Zhang,Opt.Lett.33,204(2008).
    7.M.Fang,F.Shi,and Y.Chen,Plasmonics 11,197(2015).
    8.S.Brand,M.A.Kaliteevski,and R.A.Abram,Phys.Rev.B 79,085416(2009).
    9.T.Goto,A.V.Dorofeenko,A.M.Merzlikin,A.V.Baryshev,A.P.Vinogradov,M.Inoue,A.A.Lisyansky,and A.B.Granovsky,Phys Rev Lett.101,113902(2008).
    10.T.Goto,A.V.Baryshev,M.Inoue,A.V.Dorofeenko,A.M.Merzlikin,A.P.Vinogradov,A.A.Lisyansky,and A.B.Granovsky,Phys.Rev.B 79,125103(2009).
    11.A.B.Khanikaev,A.V.Baryshev,M.Inoue,and Y.S.Kivshar,Appl.Phys.Lett.95,011101(2009).
    12.T.Hu,Y.Wang,L.Wu,L.Zhang,Y.Shan,J.Lu,J.Wang,S.Luo,Z.Zhang,L.Liao,S.Wu,X.Shen,and Z.Chen,Appl.Phys.Lett.110,051101(2017).
    13.N.Lundt,S.Klembt,E.Cherotchenko,S.Betzold,O.Iff,A.V.Nalitov,M.Klaas,C.P.Dietrich,A.V.Kavokin,S.H?fling,and C.Schneider,Nat.Commun.7,13328(2016).
    14.J.Guo,Y.Sun,Y.Zhang,H.Li,H.Jiang,and H.Chen,Phys.Rev.E78,026607(2008).
    15.Z.Chen,P.Han,C.W.Leung,Y.Wang,M.Hu,and Y.Chen,Opt.Express 20,21618(2012).
    16.O.E.Abouti,E.H.E.Boudouti,Y.E.Hassouani,A.Noual,and B.Djafari-Rouhani,Phys.Plasmas 23,082115(2016).
    17.M.E.Sasin,R.P.Seisyan,M.A.Kalitteevski,S.Brand,R.A.Abram,J.M.Chamberlain,A.Y.Egorov,A.P.Vasilev,V.S.Mikhrin,and A.V.Kavokin,Appl.Phys.Lett.92,251112(2008).
    18.H.Zhou,G.Yang,K.Wang,H.Long,and P.Lu,Opt.Lett.35,4112(2010).
    19.Y.Gong,X.Liu,H.Lu,L.Wang,and G.Wang,Opt.Express 19,18393(2011).
    20.H.X.Da,Z.Q.Huang,and Z.Y.Li,Opt.Lett.34,1693(2009).
    21.G.Lu,J.Da,Q.Mo,and P.Chen,Phys.B:Condens.Matter 406,4159(2011).
    22.B.Guo,Chin.Opt.Lett.16,020004(2018).
    23.H.Zhang,Q.Bao,D.Tang,L.Zhao,and K.Loh,Appl.Phys.Lett.95,141103(2009).
    24.H.Zhang,D.Tang,R.J.Knize,L.Zhao,Q.Bao,and K.P.Loh,Appl.Phys.Lett.96,111112(2010).
    25.Y.Xiang,X.Dai,J.Guo,H.Zhang,S.Wen,and D.Tang,Sci.Rep.4,5483(2014).
    26.S.C.Dhanabalan,J.S.Ponraj,H.Zhang,and Q.Bao,Nanoscale 8,6410(2016).
    27.Q.You,Y.Shan,S.Gan,Y.Zhao,X.Dai,and Y.Xiang,Opt.Mater.Express 8,3036(2018).
    28.J.Shi,Z.Li,D.K.Sang,Y.Xiang,J.Li,S.Zhang,and H.Zhang,J.Mater.Chem.C 6,1291(2018).
    29.J.S.Ponraj,Z.-Q.Xu,S.C.Dhanabalan,H.Mu,Y.Wang,J.Yuan,P.Li,S.Thakur,M.Ashrafi,K.Mccoubrey,Y.Zhang,S.Li,H.Zhang,and Q.Bao,Nanotechnology 27,462001(2016).
    30.Q.Bao,H.Zhang,B.Wang,Z.Ni,C.H.Y.X.Lim,Y.Wang,D.Y.Tang,and K.P.Loh,Nat.Photon.5,411(2011).
    31.P.Tang,Y.Tao,Y.Mao,M.Wu,Z.Huang,S.Liang,X.Chen,X.Qi,B.Huang,J.Liu,and C.Zhao,Chin.Opt.Lett.16,020012(2018).
    32.M.A.K.Othman,C.Guclu,and F.Capolino,J.Nanophoton.7,073089(2013).
    33.M.A.K.Othman,C.Guclu,and F.Capolino,Opt.Express 21,7614(2013).
    34.Y.-C.Chang,C.-H.Liu,C.-H.Liu,S.Zhang,S.R.Marder,E.E.Narimanov,Z.Zhong,and T.B.Norris,Nat.Commun.7,10568(2016).
    35.T.Gric and O.Hess,Opt.Express 25,11466(2017).
    36.D.Sun,M.Wang,Y.Huang,Y.Zhou,M.Qi,M.Jiang,and Z.Ren,Chin.Opt.Lett.15,051603(2017).
    37.F.Bonaccorso,Z.Sun,T.Hasan,and A.C.Ferrari,Nat.Photon.4,611(2010).
    38.G.Lu,K.Yu,Z.Wen,and J.Chen,Nanoscale 5,1353(2013).
    39.P.Tassin,T.Koschny,M.Kafesaki,and C.M.Soukoulis,Nat.Photon.6,259(2012).
    40.G.Zheng,M.Qiu,F.Xian,Y.Chen,L.Xu,and J.Wang,Appl.Phys.Express 10,092202(2017).
    41.T.Zhan,X.Shi,Y.Dai,X.Liu,and J.Zi,J.Phys.Condens.Matter.25,215301(2013).
    42.A.Podzorov and G.Gallot,Appl.Opt.47,3254(2008).
    43.M.E.Sasin,R.P.Seisyan,M.A.Kaliteevski,S.Brand,R.A.Abram,J.M.Chamberlain,I.V.Iorsh,I.A.Shelykh,A.Y.Egorov,A.P.Vasil’ev,V.S.Mikhrin,and A.V.Kavokin,Superlattices Microstruct.47,44(2010).
    44.C.Casiraghi,A.Hartschuh,E.Lidorikis,H.Qian,H.Harutyunyan,T.Gokus,K.S.Novoselov,and A.C.Ferrari,Nano Lett.7,2711(2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700