基于水文连通分析的江湖关系研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on the River-Lake Relation Based on Hydrological Connectivity Analysis
  • 作者:张磊 ; 潘保柱 ; 蒋小明 ; 侯精明 ; 王俊
  • 英文作者:ZHANG Lei;PAN Bao-zhu;JIANG Xiao-ming;HOU Jing-ming;WANG Jun;State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China,Xi'an University of Technology;
  • 关键词:水文连通 ; 量化指标 ; 江湖关系 ; 洞庭湖
  • 英文关键词:hydrological connectivity;;quantitative metrics;;river-lake relation;;the Dongting Lake
  • 中文刊名:CJLY
  • 英文刊名:Resources and Environment in the Yangtze Basin
  • 机构:西安理工大学西北旱区生态水利国家重点实验室;
  • 出版日期:2018-12-15
  • 出版单位:长江流域资源与环境
  • 年:2018
  • 期:v.27
  • 基金:国家自然科学基金项目(51622901,51479006,51709225)
  • 语种:中文;
  • 页:CJLY201812017
  • 页数:12
  • CN:12
  • ISSN:42-1320/X
  • 分类号:167-178
摘要
水文连通度具有自然和社会双重属性,但基于水文连通分析的江湖关系的综合论述尚不足,为此首先阐述了水文连通度的定义和分类;其次,归纳了横向水文连通度量化方法,并讨论了基于横向水文连通分析的江湖关系定义;最后,以洞庭湖为例,引出在人类活动干扰下,江湖关系逐渐发生变化这个问题,针对这一问题对未来进行展望,尝试建立江湖水沙变化、江湖关系演变在人为因素和气候变化综合因素影响下的响应模型,提出了可维持生态健康的工程措施,以期加强江湖的治理。
        Hydrological connectivity possesses both natural and social attributes,but comprehensive reviews are scare about this issue. This paper firstly illustrates the definition and classification of hydrological connectivity.Secondly,the quantitative methods of lateral hydrological connectivity are generalized. Finally,the Dongting Lake is taken as an example to introduce the gradual changes of river-lake relation due to human disturbances.Concerning on this problem,the paper explores some measures that can be taken in the future. It is suggested to build a response model which considers the comprehensive influence of water and sediment changes,and the evolution of river-lake relation under human disturbances and climate change. In addition,effective engineering methods should be designed to enhance the ecological health and strengthen the management of rivers and lakes.
引文
[1] MERRIAM G. Connectivity:a fundamental ecological characteristic of landscape pattern[C]//Methodology in landscape ecological research and planning:proceedings,1st seminar,International Association of Landscape Ecology, Roskilde, Denmark,Oct 15-19,1984/eds. J. Brandt,P. Agger. Roskilde,Denmark:Roskilde University Centre,1984.
    [2] BRACKEN L J,CROKE J. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems[J]. Hydrological processes,2007,21(13):1749-1763.
    [3] WARD J V. An expansive perspective of riverine landscapes:pattern and process across scales[J]. GAIA-Ecological Perspectives for Science and Society,1997,6(1):52-60.
    [4] WARD J V. The four-dimensional nature of lotic ecosystems[J].Journal of the North American Benthological Society,1989,8(1):2-8.
    [5] TURNBULL L,WAINWRIGHT J,BRAZIER R E. A conceptual framework for understanding semi-arid land degradation:Ecohydrological interactions across multiple-space and time scales[J]. Ecohydrology,2008,1(1):23-34.
    [6] HERRON N,WILSON C. A water balance approach to assessing the hydrologic buffering potential of an alluvial fan[J]. Water Resources Research,2001,37(2):341-352.
    [7] HOOKE J. Coarse sediment connectivity in river channel systems:a conceptual framework and methodology[J]. Geomorphology,2003,56(1-2):79-94.
    [8] VIDON P G F,HILL A R. Landscape controls on nitrate removal in stream riparian zones[J]. Water Resources Research,2004,40(3):114-125.
    [9] TETZLAFF D,SOULSBY C,BACON P J,et al. Connectivity between landscapes and riverscapes-a unifying theme in integrating hydrology and ecology in catchment science[J]. Hydrological Processes,2007,21(10):1385-1389.
    [10] PRINGLE C M. Hydrologic connectivity and the management of biological reserves:a global perspective[J]. Ecological Applications,2001,11(4):981-998.
    [11] PRINGLE C. What is hydrologic connectivity and why is it ecologically important[J]. Hydrological Processes, 2003, 17(13):2685-2689.
    [12] IMESON A C,PRINSEN H A M. Vegetation patterns as biological indicators for identifying runoff and sediment source and sink areas for semi-arid landscapes in Spain[J]. Agriculture Ecosystems&Environment,2004,104(2):333-342.
    [13] CALLOW J N,SMETTEM K R J. The effect of farm dams and constructed banks on hydrologic connectivity and runoff estimation in agricultural landscapes[J]. Environmental Modelling&Software,2009,24(8):959-968.
    [14] RECKENDORFER W,BARANYI C,FUNK A,et al. Floodplain restoration by reinforcing hydrological connectivity:expected effects on aquatic mollusc communities[J]. Journal of Applied Ecology,2006,43(3):474-484.
    [15] DRAGO E C,PAIRA A R,WANTZEN K M. Channel-floodplain geomorphology and connectivity of the Lower Paraguay hydrosystem[J]. Ecohydrology&Hydrobiology,2008,8(1):31-48.
    [16] BESACIER-MONBERTRAND A L,PAILLEX A,CASTELLA E. Short-term impacts of lateral hydrological connectivity restoration on aquatic macroinvertebrates[J]. River Research and Applications,2014,30(5):557-570.
    [17] AMOROS C,BORNETTE G. Connectivity and biocomplexity in waterbodies of riverine floodplains[J]. Freshwater Biology,2002,47(4):761-776.
    [18]潘保柱,王海军,梁小民,等.长江故道底栖动物群落特征及资源衰退原因分析[J].湖泊科学,2008,20(6):806-813.PAN B Z,WANG H J,LIANG X M,et al. Macrozoobenthos in Yangtze oxbows:community characteristics and causes of resources decline[J]. Journal of Lake Sciences,2008,20(6):806-813.
    [19]王中根,李宗礼,刘昌明,等.河湖水系连通的理论探讨[J].自然资源学报,2011,26(3):523-529.WANG Z G,LI Z L,LIU C M,et al. Discussion on water cycle mechanism of interconnected river system network[J]. Journal of Natural Resources,2011,26(3):523-529.
    [20]崔保山,蔡燕子,谢湉,等.湿地水文连通的生态效应研究进展及发展趋势[J].北京师范大学学报(自然科学版),2016,52(6):738-746.CUI B S,CAI Y Z,XIE T,et al. Ecological effects of wetland hydrological connectivity:problems and prospects[J]. Journal of Beijing Normal University(Natural Science),2016,52(6):738-746.
    [21]夏继红,陈永明,周子晔,等.河流水系连通性机制及计算方法综述[J].水科学进展,2017,28(5):780-787.XIA J H,CHEN Y M,ZHOU Z Y,et al. Review of mechanism and quantifying methods of river system connectivity[J]. Advances in Water Science,2017,28(5):780-787.
    [22] SPNHOFF B,ARLE J. Setting attainable goals of stream habitat restoration from a macroinvertebrate view[J]. Restoration Ecology,2007,15(2):317-320.
    [23] BOLIN B,RODHE H. A note on the concepts of age distribution and transit time in natural reservoirs[J]. Tellus,1973,25(1):58-62.
    [24] SHEN J,WANG H V. Determining the age of water and longterm transport timescale of the Chesapeake Bay[J]. Estuarine,Coastal and Shelf Science,2007,74(4):585-598.
    [25] HEIN T,BARANYI C,HERNDL G J,et al. Allochthonous and autochthonous particulate organic matter in floodplains of the River Danube:the importance of hydrological connectivity[J]. Freshwater Biology,2003,48(2):220-232.
    [26]邵军荣,吴时强,周杰,等.水体交换年龄模型研究[J].水科学进展,2014,25(5):695-703.SHAO J R,WU S Q,ZHOU J,et al. An age model for water transfer[J]. Advances in Water Science,2014,25(5):695-703.
    [27] VOGEL J C,TALMA A S. Gaseous nitrogen as evidence for denitrification in groundwater[J]. Journal of Hydrology,1981,50:191-200.
    [28] STEWART M K,MORGENSTERN U,MCDONNELL J J,et al. The’hidden streamflow’challenge in catchment hydrology:A call to action for stream water transit time analysis[J].Hydrological Processes,2012,26(13):2061-2066.
    [29] MAOSZEWSKI P,ZUBER A. Determining the turnover time of groundwater systems with the aid of environmental tracers:1.Models and their applicability[J]. Journal of hydrology,1982,57(3-4):207-231.
    [30] DELESALLE B,SOURNIA A. Residence time of water and phytoplankton biomass in coral reef lagoons[J]. Continental Shelf Research,1992,12(7-8):939-949.
    [31]郭武,钱湛.湖南湘阴东湖水体生态流量及换水周期计算方法[J].中南林业科技大学学报,2011,31(9):66-68.GUO W,QIAN Z. Aquatic ecology flow and changing water cycle calculation method for Dong Lake in Xiangyin,Hunan[J].Journal of Central South University of Forestry&Technology,2011,31(9):66-68.
    [32] DABROWSKI T,HARTNETT M,OLBERT A I. Determination of flushing characteristics of the Irish Sea:A spatial approach[J]. Computers&Geosciences,2012,45(4):250-260.
    [33] MONSEN N E,CLOERN J E,LUCAS L V,et al. A comment on the use of flushing time,residence time,and age as transport time scales[J]. Limnology and Oceanography,2002,47(5):1545-1553.
    [34] SHEN Y M,WANG J H,ZHENG B H,et al. Modeling study of residence time and water age in Dahuofang Reservoir in China[J]. Science China Physics Mechanics&Astronomy,2011,54(1):127-142.
    [35] FAGHERAZZI S,SUN T. Numerical simulations of transportational cyclic steps[J]. Computers&Geosciences,2003,29(9):1143-1154.
    [36] CAO Z,PENDER G,WALLIS S,et al. Computational dambreak hydraulics over erodible sediment bed[J]. Journal of Hydraulic Engineering,2004,130(7):689-703.
    [37] SIMPSON G,CASTELLTORT S. Coupled model of surface water flow,sediment transport and morphological evolution[J].Computers&Geosciences,2006,32(10):1600-1614.
    [38]张晶,董哲仁,孙东亚,等.基于主导生态功能分区的河流健康评价全指标体系[J].水利学报,2010,39(8):883-892.ZHANG J,DONG Z R,SUN D Y,et al. Complete river health assessment index system based on eco-regional method according to dominant ecological functions[J]. Journal of Hydraulic Engineering,2010,39(8):883-892.
    [39]陈星,许伟,李昆朋,等.基于图论的平原河网区水系连通性评价——以常熟市燕泾圩为例[J].水资源保护,2016,32(2):26-29.CHEN X,XU W,LI K P,et al. Evaluation of plain river network connectivity based on graph theory:a case study of Yanjingwei in Changshu City[J]. Water Resources Protection,2016,32(2):26-29.
    [40]茹彪,陈星,张其成,等.平原河网区水系结构连通性评价[J].水电能源科学,2013,31(5):9-12.RU B,CHEN X,ZHANG Q C,et al. Evaluation of structural connectivity of river system in plain river network region[J]. International Journal Hydroelectric Energy,2013,31(5):9-12.
    [41] SHAW E A,LANGE E,SHUCKSMITH J D,et al. Importance of partial barriers and temporal variation in flow when modelling connectivity in fragmented river systems[J]. Ecological Engineering,2016,91:515-528.
    [42]万荣荣,杨桂山,王晓龙,等.长江中游通江湖泊江湖关系研究进展[J].湖泊科学,2014,26(1):1-8.WAN R R, YANG G S,WANG X L,et al. Progress of research on the relationship between the Yangtze River and its connected lakes in the middle reaches[J]. Journal of Lake Science,2014,26(1):1-8.
    [43] LESACK L F W,MELACK J M. Flooding hydrology and mixture dynamics of lake water derived from multiple sources in an Amazon floodplain lake[J]. Water Resources Research,1995,31(2):329-345.
    [44] DUNNE T,MERTES L A K,MEADE R H,et al. Exchanges of sediment between the floodplain and channel of the Amazon River in Brazil[J]. Geological Society of America Bulletin,1998,110(4):31-46.
    [45] MATIAS P M,MORAIS J,COELHO A V,et al. The role of flood plains in the hydrology and sediment dynamics of the Amazon River, Brazil[J]. Jbic Journal of Biological Inorganic Chemistry,2005,2(4):507-514.
    [46] BONNET M P,BARROUX G,MARTINEZ J M,et al. Floodplain hydrology in an Amazon floodplain lake(Lago Grande de Curuaí)[J]. Journal of Hydrology,2008,349(1):18-30.
    [47] MAIA P D,MAURICE L,TESSIER E,et al. Role of the floodplain lakes in the methylmercury distribution and exchanges with the Amazon River,Brazil[J]. Journal of Environmental Sciences,2018,68:24-40.
    [48]卢金友,罗恒凯.长江与洞庭湖关系变化初步分析[J].人民长江,1999,30(4):24-26.LU J Y,LUO H K. Preliminary analysis on variation of the relation between Yangtze river and Dongting lake[J]. Yangtze River,1999,30(4):24-26.
    [49]霍勇峰.长江中游江湖关系变化及疏浚对防洪的影响[D].南京:河海大学,2005.HUO Y F. The change of river lake relations and the eeffct to flood control of dredging up[D]. Nanjing:Hohai University,2005.
    [50]王化可,唐红兵.巢湖生态引水对改善江湖交换关系的作用研究[J].中国水利,2010(23):27-29.WANG H K,TANG H B. Study of the effect of ecological diversions for Chao Lake to improve the rivers and lakes’exchange relations[J]. China Water Resources,2010(23):27-29.
    [51]邵玉龙,许有,马爽爽.太湖流域城市化发展下水系结构与河网连,变化分析——以苏州市中心区为例[J].长江流域资源与环境,2012,21(10):1167-1172.SHAO Y L,XU Y,MA S S. Change of river structure and stream network connectivity in the Taihu Lake basin under the urbanization development:a case study in urban Suzhou[J].Resources and Environment in the Yangtza Basin,2012,21(10):1167-1172.
    [52]邓金运,范少英,庞灿楠,等.三峡水库蓄水期长江中游湖泊调蓄能力变化[J].长江科学院院报,2018,35(5):147-152.DENG J Y,FAN S Y,PANG C N,et al. Adjustment of regulation and storage capacity of lakes in the middle Yangtze River basin during impoundment of Three Gorges Reservoir[J]. Journal of Yangtze River Scientific Research Institute,2018,35(5):147-152.
    [53]李晖,尹辉,白旸,等.近60年洞庭湖区水沙演变特征及趋势预测[J].水土保持研究,2013,20(3):139-142.LI H,YIN H,BAI Y,et al. Research on evolution characteristics and tendency prediction of runoff and sediment in recent 60years in Dongting Lake[J]. Research of Soil and Water Conservation,2013,20(3):139-142.
    [54]卢金友,姚仕明.水库群联合作用下长江中下游江湖关系响应机制[J].水利学报,2018,49(1):36-46.LU J Y,YAO S M. Response mechanism of the river and lakes in the middle and lower reaches of the Yangtze River under the combined effect of reservoir groups[J]. Journal of Hydraulic Engineering,2018,49(1):36-46.
    [55]周永强,李景保,张运林,等.三峡水库运行下洞庭湖盆冲淤过程响应与水沙调控阈值[J].地理学报,2014,69(3):409-421.ZHOU Y Q,LI J B,ZHANG Y L,et al. Silting/scouring process responses of Dongting Lake basin to the operations of TGR and thresholds of water-sediment regulation[J]. Acta Geographica Sinica,2014,69(3):409-421.
    [56]王婷,王坤,王丽婧,等.三峡工程运行对洞庭湖水环境及富营养化风险影响评述[J].环境科学研究,2018,31(1):15-24.WANG T,WANG K,WANG L J,et al. Impacts of the Three Gorges Dam operation on water environment and eutrophication of Dongting Lake:A Review[J]. Research of Environmental Sciences,2018,31(1):15-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700